
COMMUTATIVE ALGEBRA

OREN BECKER

This introductory set of notes is based on a 24-lecture Part III (master’s
level) course I taught at the University of Cambridge during Michaelmas terms
2022–2024, with some modifications. If you happen to spot any errors or have
suggestions, I’d be grateful if you reached out to me at oren.becker@gmail.com.

Some sections draw on the classic Introduction to Commutative Algebra
by Atiyah and Macdonald, and for the part on Tensor Products, I found
inspiration in two excellent sets of notes by Keith Conrad, available at:
https://kconrad.math.uconn.edu/blurbs/.
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1. A concise review of rings and modules

Unless stated otherwise, we use the term ring for a commutative (i.e.
ab = ba) unital (i.e. 1 ∈ A) ring A.

Nevertheless, here’s a important noncommutative ring: For an abelian
group M , let EndM be the ring of group endomorphisms of M (i.e. group
homomorphisms M → M), with pointwise addition, and where the ring
multiplication is given by composition of functions.

Recall that a homomorphism R → S of unital rings is required to send
1R 7→ 1S .

Definition 1.1. An R-module M (R a ring) is an abelian group (M,+)

together with a fixed ring homomorphism ρ : R→ EndM (called the structure
homomorphism).

For r ∈ R and m ∈M , we write rm := (ρ(r))m. Then:

(1) r(m1 +m2) = (ρ(r))(m1 +m2) = (ρ(r)m1)+(ρ(r)m2) = rm1+rm2

(since ρ(r) : M →M is a group homomorphism)
(2) (r1 + r2)m = ρ(r1 + r2)m = (ρ(r1) + ρ(r2))m = r1m+ r2m

(since ρ : R→ EndM is a ring homomorphism)
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(3) etc.

Note:

(1) For a field k, a k-module is the same thing as a k-vector space.
(2) Every abelian group M has a unique structure of a Z-module (because

there is exactly one ring homomorphism Z→ EndM). So a Z-module
is the same as an abelian group.

(3) An R-submodule of an R-module M is an additive subgroup N ⊂M
such that rN ⊂ N for all r ∈ R.

(4) Every ring R is an R-module in a natural way (where ρ : R→ EndR

is given by ρ(r)r′ = rr′).
(5) For a subset S of an R-module M , the R-submodule of M generated

by S is the intersection of all R-submodules of M that contain S.
Equivalently, it is the set of sums of the form

∑n
i=1 rixi, n ≥ 0, ri ∈ R,

xi ∈ S (these are called R-linear combinations of the elements of S;
note that each such sum has finitely many terms).

(6) An ideal of the ring R is the same thing as an R-submodule of R.

For an ideal I of R, we can form the quotient ring R/I. As an abelian
group, this is just the group quotient R/I. The multiplication is given by
(r1 + I)(r2 + I) = r1r2+I (note that the product set {(r1 + x1)(r2 + x2) | x1, x2 ∈ I}
is contained in r1r2 + I, but the inclusion might be proper, unlike the case
of a quotient group G/N , N ◁G, where the product set of g1N and g2N is
always equal to g1g2N ; it is true, however, that r1r2 + I is the unique coset
of I that contains the product set above). Note that a subset I of R is an
ideal if and only if there is a ring S and a ring homomorphism R→ S whose
kernel is I.

2. Chain conditions

Definition 2.1. An R-module M is noetherian if one (hence both) of the
following conditions holds:

(1) Every ascending chain of submodules M1 ⊂M2 ⊂ . . . of M stabilizes
(i.e., for some n ≥ 1, Mn′ =Mn for all n′ ≥ n).

(2) Every nonempty set Σ of submodules of M has a maximal element
(i.e., an element of Σ not contained in any other element of Σ).

An R-module M is artinian if it satisfies (1) above, but with “ascending”
replaced by “descending” (i.e. M1 ⊃M2 ⊃ . . . ). Equivalently, M is artinian
if it satisfies (2) above, but with “maximal” replaced by “minimal”.

The equivalence of the two conditions above is proved using the axiom
of choice (or some weak form of it). Noetherian modules have one more
equivalent characterization, which I personally prefer to use most of the time:
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Lemma 2.2. An R-module M is noetherian if and only if every submodule
of M is finitely generated.

In particular, every noetherian module is finitely generated. The converse is
false: Every ring R is finitely generated as an R-module (by the single element
1R), and in particular this is true for the polynomial ring R = Z[T1, T2, . . . ].
Let M be the submodule of R generated by T1, T2, . . . (consisting of all
polynomials with constant term 0). Any finite subset S of M is contained
in the submodule M ′ = R · T1 + . . . + R · Tℓ for some ℓ ≥ 0 because each
polynomial in S involves finitely many variables. But M ′ (which is just the
submodule of R generated by T1, . . . , Tℓ) does not contain Tℓ+1, and thus S
does not generate M .

Definition 2.3. A ring R is noetherian (resp. artinian) if R, regarded as an
R-module, is noetherian (resp. artinian).

Equivalently, one may define a noetherian (resp. artinian) ring by taking
Definition 2.1, and replacing the word submodule by the word ideal.

Example 2.4.
(1) Z-modules:

(a) Z, as a Z-module, is noetherian, but not artinian.
(b) The Z-module Z

[
1
2

]
/Z is artinian, but not noetherian (this re-

quires some thought). Here Z
[
1
2

]
=
{

a
2m | a,m ∈ Z

}
.

(2) Rings:
(a) Z, as a ring, is noetherian, but not artinian.
(b) Every artinian ring is noetherian. In fact, a ring R is artinian if

and only if R is noetherian of Krull dimension zero (see later).
Recall that another name for a homomorphism of R-modules is an R-linear
map.

Definition. Let R be a ring. A sequence

· · · −→Mi−1
fi−→Mi

fi+1−→Mi+1 −→ · · ·

of R-modules (Mi)i∈Z and R-linear maps (fi : Mi−1 →Mi)i∈Z is exact if
im fi = ker fi+1 for all i ∈ Z.

A short exact sequence (SES ) is an exact sequence of the form:

0 −→ N
i−→M

p−→ L −→ 0

Remark 2.5. In a SES as above:
(1) The left and right maps are necessarily the zero maps.
(2) Thus i is injective and p is surjective.
(3) Thus N ∼= i(N) and L ∼=M/i(N) as R-modules.
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Lemma 2.6. Let
0→ N →M → L→ 0

be a short exact sequence of R-modules. Then M is noetherian (resp. artinian)
if and only if both N and L are noetherian (resp. artinian).

Corollary 2.7. If M1 and M2 are noetherian (resp. artinian) R-modules
then M1 ⊕M2 is noetherian (resp. artinian).

Proof. Apply Lemma 2.6 to the SES:

0 −→M1
m1 7→(m1,0)−→ M1 ⊕M2

(m1,m2)7→m2−→ M2 −→ 0

□

Note that the corollary can be applied repeatedly a finite number of times
to deduce that M1 ⊕ . . . ⊕Mn is a noetherian (resp. artinian) R-module
whenever M1, . . . ,Mn are noetherian (resp. artinian).

Two observations:
(1) R-linear maps from R: For an R-linear map φ : R→M we have

φ(r) = φ(r · 1) = rφ(1). So φ(r) = rm for m = φ(1). On the other
hand, r 7→ rm′ is an R-linear map for all m′ ∈M .

(2) The universal property of the direct sum: For R-modules (Mt)t∈T
(T any set), consider the direct sum

⊕
t∈T Mt and the natural em-

beddings ρt : Mt →
⊕

t∈T Mt (recall that each element of
⊕

t∈T Mt

is zero in all but finitely many coordinates, by definition). Then for
any R-module N and R-linear maps φt : Mt → N there is exactly
one homomorphism φ :

⊕
t∈T Mt → N such that φ ◦ ρt = φt for all

t ∈ T . In other words, specifying an R-linear map
⊕

t∈T Mt → N is
equivalent to specifying a collection of R-linear maps (Mt → N)t∈T .

(3) Combining the two observations above, we see that R-linear maps
φ : R⊕ℓ → M are exactly the maps of the form (r1, . . . , rℓ) 7→∑ℓ

i=1 rimi for fixed m1, . . . ,mℓ. If φ is surjective then M is finitely
generated (by φ(1, 0, . . . , 0), . . . , φ(0, . . . , 0, 1)). Conversely, if N is an
R-module generated by finitely many elements n1, . . . , nk ∈ N then
there is a surjective R-linear map R⊕k → N given by (r1, . . . , rk) 7→∑k

i=1 rini.
To summarize, a “finitely generated R-module” is the same as “an
R-module that admits a surjective R-linear map from R⊕ℓ for some
integer ℓ ≥ 0”, i.e. “a quotient module of R⊕ℓ for some integer ℓ ≥ 0

(up to isomorphism)”.
(4) In general, an R-module isomorphic to R⊕S (i.e., the direct sum

of |S| copies of R, where S is finite or infinite) is called a free R-
module. By the discussion above, we see that it is easy to produce
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homomorphisms from a free R-module to any other R-module (just
choose a homomorphism for each coordinate).
Equivalently, an R-module M is free if it has a free basis (i.e., a
subset B ⊂ M such that every x ∈ M is equal to

∑ℓ
i=1 rixi, ℓ ≥ 0,

0 ̸= ri ∈ R, xi ∈ B in a unique way).
(5) For a field k, the theorem “every k-vector space has a basis” is

equivalent to “every k-module is free”. In particular, the k-module
kN (of all N-indexed tuples with entries in k) is isomorphic to k⊕S

for some set S (the proof that every vector space has a basis requires
some form of the axiom of choice, so the isomorphism kN ∼= k⊕S is
somewhat mysterious).

Proposition 2.8. Let R be a noetherian (resp. artinian) ring. Then every
finitely generated R-module M is noetherian (resp. artinian).

Proof. By the observations above, M is a quotient of R⊕ℓ for some ℓ ≥ 1.
But R is a noetherian R-module, and so R⊕ℓ is noetherian, and thus so is its
quotient M (and similarly for the artinian case). □

In particular, a finitely generated module over a noetherian ring is noe-
therian1. A deeper (and still true) statement is Hilbert’s basis theorem (see
below): every finitely generated algebra over a noetherian ring is noetherian.
But what is an algebra?

Definition 2.9. An R-algebra is a ring A equipped with a fixed ring homo-
morphism ρ : R→ A.

For r ∈ R and x ∈ A, we write rx := ρ(r)x.

So specifying an R-algebra is superficially similar to specifying an R-
module, with two major differences: We start with a ring A (rather than
a mere abelian group M), and then we fix a ring homomorphism R → A

(rather than R→ EndM).
So, every R-algebra is also an R-module: Take an R-algebra A, whose

structural homomorphism is ρ : R→ A. Then the map R→ End(R,+) given
by r 7→ (x 7→ ρ(r)x) is a ring homomorphism, making A into an R-module.

Note that every ring A is a Z-algebra in exactly one way (because there is
exactly one ring homomorphism Z→ A).

It is sometimes notationally convenient to notice that ρ(r) = r · 1A in the
notation of Definition 2.9 (Proof: ρ(r) = ρ(r) · 1A = r · 1A). This allows us to
declutter the notation by not naming the ring homomorphism R→ A when
taking about an algebra).

1So, a ring R is noetherian if and only if every submodule of every finitely generated
R-module is again finitely generated (check!)
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A subalgebra of an R-algebra A is a subring B ⊂ A such that rx ∈ B for
all r ∈ R and x ∈ B. Note that is implies that B contains the image of R in
A (i.e. all elements of the form r · 1A). For a subset S of an R-algebra A,
the subalgebra B of A generated by S is the intersection of the subalgebras
of A that contain S. Equivalently B consists of all elements of the form
p(x1, . . . , xm), m ≥ 0, where p ∈ R[T1, . . . , Tm] (i.e., p is a polynomial in the
variables T1, . . . , Tm with coefficients in R) and x1, . . . , xm ∈ S.

Example 2.10. Let k be a field and consider the polynomial ring A =

k[T1, . . . , Tm]. Then A is a k-algebra and a k-module (in the natural ways).
But A is a finitely generated k-algebra (generated by T1, . . . , Tm), but not a
finitely generated k-module (prove!).

A further clarification: Let A be an R-algebra and S a subset of A. Then
the R-submodule of A generated by S is the set of elements of the form
p(x1, . . . , xm), m ≥ 0, where p ∈ R[T1, . . . , Tm] has degree 1 and no constant
term and x1, . . . , xm ∈ S (whereas the subalgebra generated by S consists of
elements of the same form, but with no restriction on the polynomial p).

Remark 2.11. First, recall that {0} is a ring (called the zero ring). It is the
only ring where 1 = 0 (prove!), and there is no ring homomorphism from
{0} to any nonzero ring. Now to the remark itself: For a k-algebra A ̸= {0},
where k is a field, the structural ring homomorphism ρ : k → A must send
1 7→ 1. Thus 1 /∈ ker ρ, and so ker ρ is an ideal of k that does not contain
1. But k has only two ideals: {0} and k. So ker ρ = {0}, i.e. ρ is injective.
In particular, a nonzero k-algebra contains a copy of k (embedded in A in a
particular way via ρ).

Definition 2.12. For R-algebras A and B, with structural homomorphisms
ρA : R→ A and ρB : R→ B, an R-algebra homomorphism A→ B is a ring
homomorphism φ : A→ B such that φ ◦ ρA = ρB.

(so, an R-algebra homomorphism is a ring homomorphism between R-
algebras that sends r · 1A 7→ r · 1B for each r ∈ R).

Equivalently, φ is an R-algebra homomorphism if and only if φ is an R-
linear map such that φ(1A) = 1B and φ(a1a2) = φ(a1)φ(a2) for all a1, a2 ∈ A
(check!).

Exercise 2.13. Some people wrongly say that a nonzero algebra over a field
k is just a “ring that contains k”. Give them an example that shows that their
definition does not allow to capture the notion of a k-algebra homomorphism
as in Definition 2.12. Hint: Make C into a C-algebra in two different ways,
and then check if the identity map C → C is a C-algebra homomorphism,
where the domain and range and C-algebras in different ways.
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For a ring R, the polynomial R-algebra R[T1, . . . Tn] has the following
universal property: For every R-algebra A and elements a1, . . . , an ∈ A,
there is exactly one R-algebra homomorphism R[T1, . . . , Tn]→ A that sends
Ti 7→ ai for all 1 ≤ i ≤ n. This works even if there are infinitely many
variables (remember that each polynomial involves finitely many variables).
Thus, it is easy to produce homomorphisms from R[T1, . . . , Tn] to any other
R-algebra (which is similar to the way it is easy to produce homomorphisms
from a free R-module to any other R-module).

We say that an algebra A is noetherian (resp. artinian) if A, as a ring, is
noetherian (resp artinian).

Theorem 2.14 (Hilbert’s basis theorem). Every finitely generated algebra
over a noetherian ring is noetherian.

Proof. Let R be a noetherian ring. By the observations above, it suffices
to prove that the polynomial algebra R[T1, . . . , Tn] is noetherian. Since
R[T1, . . . , Tn] ∼= R[T1, . . . , Tn−1][Tn], it suffices to show that the univariate
polynomial algebra R[T ] is noetherian, and then proceed by induction.

Let a be an ideal ofR[T ]. For i ≥ 0, write a(i) =
{
c0 | c0T i + . . .+ ciT

0 ∈ a, c0, . . . , ci ∈ R
}

(this set consists exactly of the leading coefficients of all degree-i polynomials in
a, toegether with 0). Then a(i) ⊂ a(i+ 1) and a(i) is an ideal of B for all i ≥ 0

(check!). Since R is noetherian, the sequence a(0) ⊂ a(1) ⊂ . . . stabilizes, say,
a(m′) = a(m) for some m ≥ 0 and all m′ ≥ m, and each ideal a(i), i ≥ 0, is
generated by some finite subset {ri,1, . . . , ri,ni} of R. By the definition of a(i),
there is fi,j ∈ a such that fi,j = ri,jT

i + {terms of degree < i in T}. Let b

be the ideal of R[T ] generated by the finite set {fi,j | 0 ≤ i ≤ m, 1 ≤ j ≤ ni}.
So b(i) = a(i) for all i ≥ 0 (check!). We claim that a = b.

By construction, b ⊂ a. If a ̸= b, take f ∈ a \ b of least degree, and
denote i = deg f . Since b(i) = a(i), there is g ∈ b such that deg(f − g) < i,
and thus f − g ∈ b (by the minimality of i, and since f − g ∈ a). Thus
f = (f − g) + g ∈ b, a contradiction. □

Remark 2.15. It is a completely general fact that if a finitely generated ideal
I of a ring A is generated by a subset S of A then there is a finite subset S0
of S that generates I (prove!).

Now, take a field k. Take a subset S of k[T1, . . . , Tn], generating an ideal
I. The set V of simultaneous zeros in kn of the polynomials in S is equal
to the set of simultaneous zeros in kn of the polynomials in I (check!). But
I is finitely generated (by Hilbert’s basis theorem), and thus V is also the
set of simultaneous zeros of some finite subset S0 of S. This means that if
we start from the empty set, and add to it the elements of S one by one,
we will see that the set of simultaneous zeros in kn shrinks and shrinks, but
at a certain finite step it stabilizes (no longer shrinks). In particular, every
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infinite system of polynomial equations is equivalent to a finite subsystem of
polynomial equations.

Exercise 2.16. We have seen that every finitely generated module over a
noetherian (resp. artinian) ring is noetherian (resp. artinian). We have also
seen that every finitely generated algebra over a noetherian ring is noetherian.
But is every finitely generated algebra over an artinian ring artinian?

Remark 2.17 (Groebner bases). [ Non-examinable ] Let k be a field and
consider the polynomial algebra k[T1, . . . , Tn]. For two monomials Tα1

1 · · ·Tαn
n

and T
β1
1 · · ·T

βn
n , we say that Tα1

1 · · ·Tαn
n ≻ T

β1
1 · · ·T

βn
n if α1 + · · · + αn >

β1 + · · · + βn or (α1 + · · · + αn = β1 + · · · + βn but (α1, . . . , αn) is larger
than (β1, . . . , βn) lexicographically). Using ≻, we can talk about the leading
monomial of a polynomial f ∈ k[T1, . . . , Tn]. Now, for an ideal I = (f1, . . . , fℓ)

of k[T1, . . . , Tn], one may consider two sets: A = LM(I), the set of leading
monomials elements of I, and B, the set of monomials divisible by the leading
monomial of at least one of f1, . . . , fℓ. Clearly B ⊂ A. If B = A, we say that
f1, . . . , fℓ is a Groebner basis of I (a notion invented by Buchberger). It is
a theorem that every ideal in k[T1, . . . , Tn] has a finite Groebner basis, and
that every Groebner basis of I generates I. This is a more complicated way
to prove Hilbert’s basis theorem (for finitely generated algebras over a field),
but Groebner bases are useful on their own for making computations. There
is an algorithm (Buchberger’s algorithm) that takes a generating set for I as
input and generates a Groebner basis for I. Example applications: Given
ideals I = (f1, . . . , fℓ) and J = (g1, . . . , gk) of k[T1, . . . , Tn], can you find a
generating set for I ∩ J? What about determinng if a given h ∈ k[T1, . . . , Tn]
belongs to I? There are algorithms in terms of Groebner bases to solve these
problems (and many other computational problems in commutative algebra,
related to dimension, projections, and more). We don’t have time for this,
but much of the theory is quite elementary.

3. Tensor products

Literature: There two sets of fantastic lecture notes on tensor products
on Keith Conrad’s website at https://kconrad.math.uconn.edu/blurbs/.
They cover more than is covered here. I’ve drawn inspiration from these
notes for some parts of the presentation in this chapter.

3.1. Tensor products of modules. Let M and N be R-modules. Infor-
mally, the tensor product M ⊗R N is an R-module consisting of all formal
sums

∑k
i=1mi ⊗ ni, mi ∈M , ni ∈ N , with the identifications:

(1) m⊗ n1 +m⊗ n2 = m⊗ (n1 + n2).
(2) m1 ⊗ n+m2 ⊗ n = (m1 +m2)⊗ n.

https://kconrad.math.uconn.edu/blurbs/
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(3) r(m⊗ n) = (rm)⊗ n = m⊗ (rn) (r ∈ R).

First note that 0⊗ n = 0(1⊗ n) = 0, and similarly m⊗ 0 = 0 for all m ∈M
and n ∈ N .

When the ring R is clear from the context, we shall write M ⊗N to mean
M ⊗R N .

Example 3.1.

(1) Consider Z/2 and Z/3 as Z-modules. In Z/2⊗ Z/3 we have

a⊗ b = (3a)⊗ b = a⊗ (3b) = a⊗ 0︸︷︷︸
0·0

= 0 · (a⊗ 0) = 0⊗ 0 ,

so Z/2⊗ Z/3 must be the Z-module {0⊗ 0}.
(2) Let k be a field, and consider two finite dimensional k-vector spaces

V,W . We shall see that dimk V ⊗W = dimk(V ) · dimk(W ).

Recall that a map f : V ×W → U , for R-modules V,W,U , is R-bilinear if
v 7→ f(v, w0) : V → U and w 7→ f(v0, w) are R-linear (i.e., homomorhpisms
of R-modules) for all v0 ∈ V , w0 ∈W .

Definition 3.2. Let M,N be R-modules. Write F for the free R-modules
on M ×N (i.e. F ∼= R⊕(M×N), with basis {em,n | (m,n) ∈M ×N}). The
tensor product of M and N is M⊗RN := F/K, where K is the R-submodule
of F generated by the union of:

(1) {em,n1 + em,n2 − em,n1+n2 | m ∈M,n1, n2 ∈ N}.
(2) {em1,n + em2,n − em1+m2,n | m1,m2 ∈M,n ∈ N}.
(3) {rem,n − erm,n | r ∈ R,m ∈M,n ∈ N}.
(4) {rem,n − em,rn | r ∈ R,m ∈M,n ∈ N}.

The image of em,n ∈ F in M ⊗N is denoted m⊗ n. We have an R-bilinear
map iM⊗N : M ×N →M ⊗N given by iM⊗N (m,n) = m⊗ n.

The elements of M ⊗N are sometimes called tensors, and the elements of
the form m⊗ n, m ∈M , n ∈ N are called pure tensors. By construction, we
see that the pure tensors generate M ⊗N . But not every element of M ⊗N
is pure (in general).

Note: The pure tensors certainly generate M ⊗R N as an R-module
by construction. So every x ∈ M ⊗R N can be written in the form x =∑ℓ

i=1 ri(mi ⊗ ni) =
∑ℓ

i=1(rimi)⊗ni (ri ∈ R, mi ∈M , ni ∈ N). So the pure
tensors generate M ⊗R N even as a Z-module (i.e. as an abelian group).

Proposition 3.3 (The universal property of a tensor product). For R-
modules M and N , the pair (M ⊗N, iM⊗N ) satisfies the following universal
property: For every R-module L and R-bilinear map f : M ×N → L, there
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is exactly one R-linear map h : M ⊗N → L such that f = h ◦ iM⊗N , i.e. the
following diagram commutes:

M ×N
f

))

iM⊗N // M ⊗N

∃!h
��
L

Proof. Write {em,n | (m,n) ∈M ×N} for the standard basis of F = R⊕M×N .
Take an R-bilinear f : M ×N → L. The condition f = h◦ iM⊗N is equivalent
to h(m⊗ n) = f(m,n) for all (m,n) ∈ M × N . Thus there is at most
one such h since {m⊗ n | m ∈M,n ∈ N} generates M ⊗ N . But such h

really does exist because, for K as in Definition 3.2, the map R⊕(M×N) → L

extending the law em,n 7→ f(m,n) vanishes on all of the generators of K since
f is R-bilinear, and thus this law vanishes on K, and thus factors through
M ⊗N to give h : M ⊗N → L as required. □

I like thinking of the universal property of the tensor product in challenge-
solution terminology: You challenge M⊗N with some R-blinear map f : M×
N → L and you are guaranteed a unique solution h : M ⊗ N → L to the
equation f = h ◦ iM⊗N (where h is an R-linear map).

Remark 3.4. The universal property of the tensor product of R-modules
M,N can also been seen as a bijection between sets for every R-module C:

BilinR(M ×N,L)
∼−→ HomR(M ⊗R N,L) .

The LHS is the set of R-bilinear maps M × N → L, the RHS is the set
of R-linear maps M ⊗R N → L, and the bijection takes a bilinear map
f : M × N → L to the unique R-linear map h : M ⊗R N → L such that
f = h ◦ iM⊗N , i.e. f(m,n) = h(m⊗ n) for all (m,n) ∈M ×N .

Proposition 3.5. For R-modules M,N , if a pair (T, j), T an R-module
and j : M ×N → T an R-bilinear map, satisfies the universal property from
Proposition 3.3, then there is exactly one R-module isomorphism φ : M⊗N →
T such that φ ◦ iM⊗N = j (in particular, M ⊗N ∼= T as R-modules by the
isomorphism sending m⊗ n 7→ j(m,n)).

Proof. Challenge M ⊗N with the R-bilinear map j : M ×N → T to obtain
the solution φ : M ⊗N → T such that j = φ ◦ iM⊗N .

Now challenge T with the R-bilinear map iM⊗N : M × N → M ⊗ N to
obtain the solution ψ : T →M ⊗N such that iM⊗N = ψ ◦ j.

Consider the composite map ψ ◦ φ. Then (ψ ◦ φ) ◦ iM⊗N = ψ ◦ j = iM⊗N .
In other words, ψ ◦ φ : M ⊗ N → M ⊗ N is a solution when challenging
M ⊗N with the R-bilinear map iM⊗N : M ×N →M ⊗N .
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But the identity map idM⊗N is also a solution to the same challenge. So
by the uniquness of the solution, ψ ◦ φ = idM⊗N .

Similarly, φ ◦ ψ = idT . Thus ψ and φ are isomorphisms. The uniqueness
of φ (among R-linear maps such that φ ◦ iM⊗N = j) is clear (why?) □

To prove that an element
∑ℓ

i=1mi ⊗ ni of a tensor product M ⊗ N is
equal to 0 we can try to play with the bilinearity relations (see the example
above with Z/2⊗Z/3). The following proposition also shows us how to prove
that an element of M ⊗N is not zero by constructing a single incriminating
R-bilinear map.

Proposition 3.6. Let M,N be R-modules. Then
∑ℓ

i=1mi⊗ni = 0 in M⊗N
if and only for every R-module L and R-bilinear map f : M × N → L we
have

∑ℓ
i=1 f(mi, ni) = 0.

Proof. Assume that
∑ℓ

i=1mi ⊗ ni = 0. Let f : M ×N → L be an R-bilinear
map, L an R-module. Then f = h◦iM⊗N for some R-linear map h : M⊗N →
L, and so

∑ℓ
i=1 f(mi, ni) =

∑ℓ
i=1 h(mi ⊗ ni) = h

(∑ℓ
i=1mi ⊗ n

)
= h(0) =

0.
Now, assume that

∑ℓ
i=1mi⊗ni ̸= 0. Then

∑ℓ
i=1 iM⊗N (mi, ni) =

∑ℓ
i=1mi⊗

ni ̸= 0. □

Example 3.7. For R-modules M and N , M ⊗ N is generated (as an R-
module) by the pure tensors {m⊗ n | (m,n) ∈M ×N}. If M (resp. N) is
generated as an R-module by a subset S ⊂M (resp. T ⊂ N) then M ⊗N is
generated by {s⊗ t | (s, t) ∈ S × T}.

Take a field k and m,n ≥ 0. Write {e1, . . . , em} and {f1, . . . , fn} for the
standard bases of km and kn, respectively. By the preceding paragraph,
km ⊗ kn is spanned (over k) by B = {ei ⊗ fj}i,j . In fact, B is a basis for
km ⊗ kn (over k). Indeed, assume that

∑m
i=1

∑n
j=1 αij(ei ⊗ fj) = 0, αij ∈ k.

Consider projection maps πa : km → k and pb : k
n → k from the a-th and

b-th coordinates (respectively). Then T : km × kn → k given by T (v, w) =
πa(v)pb(w) is a k-bilinear map. By Lemma 3.6,

∑m
i=1

∑n
j=1 T (αijei, fj) = 0.

But the LHS is equal to αa,b, which proves that B is k-linearly independent.
So km ⊗k k

n ∼= kmn. The same reasoning shows that Rm ⊗R R
n ∼= Rmn for

any ring. In fact, the same reasoning shows that for all (possibly infinite) sets
I, J , the R-module R⊕I ⊗R R

⊕J is free with basis {ei ⊗ ej | i ∈ I, j ∈ J}.

Now take R2 ⊗R R2 for example. This tensor product contains infinitely
many pure tensors (these are all elements of the form v ⊗ w, v, w ∈ R2, by
definition). Some sums in R2 ⊗ R2 are equal to pure tensors even if they
don’t seem so at first:

3(e1 ⊗ e1) + 4(e1 ⊗ e2) + 6(e2 ⊗ e1) + 8(e2 ⊗ e2)
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is in fact pure since it is equal to

(e1 + 2e2)⊗ (3e1 + 4e2) .

But some (most, in some senses) elements of R2 ⊗ R2 are not pure. The
basis {ei ⊗ ej}i,j of R2⊗R2 will be helpful in order to show that. Every pure
tensor is of the form (α, β, γ, δ ∈ R):

(αe1 + βe2)⊗ (γe1 + δe2)

and thus has the special form:

(αγ)(e1 ⊗ e1) + (αδ)(e1 ⊗ e2) + (βγ)(e2 ⊗ e1) + (βδ)(e2 ⊗ e2)

(notice that (αγ, αδ) and (βγ, βδ) are linearly dependent). So, for example,
the following tensor is not pure in R2 ⊗ R2:

1 · (e1 ⊗ e1) + 2 · (e1 ⊗ e2) + 3 · (e2 ⊗ e1) + 4 · (e2 ⊗ e2)

(you will be asked to think about this more generally and thoroughly in the
example sheet).

Example 3.8 (Warning). Consider the Z-modules Z and Z/2Z, and the
submodule 2Z of Z. In Z⊗ZZ/2Z, we have 2⊗ (1 + 2Z) = 2(1⊗ (1 + 2Z)) =
1⊗ (2 + 2Z) = 0.

This computation is invalid in (2Z) ⊗Z Z/2Z. In fact, in this tensor
product, we have 2 ⊗ (1 + 2Z) ̸= 0. To see this, define a Z-bilinear map
b : 2Z×Z/2Z→ Z/2Z by b(2x, y + 2Z) = xy+2Z (check bilinearity!). Then
b(2, 1 + 2Z) ̸= 0, and so 2⊗ (1 + 2Z) ̸= 0.

So, the notation 2⊗ (1 + 2Z) is somewhat misleading. We must remember
which tensor product we are working in! And it’s wrong to naively view
(2Z)⊗Z Z/2Z as a submodule of Z⊗Z Z/2Z (for the same reason).

Remark 3.9. The other direction does work: if M ′ and N ′ are submodules of
M and N (respectively) and

∑
mi⊗ ni = 0 in M ′⊗N ′, then

∑
mi⊗ ni = 0

also in M ⊗N (prove!).

Proposition 3.10. Assume that
∑ℓ

i=1mi ⊗ ni = 0 in M ⊗N . Then there
are finitely generated R-modules M ′ ⊂ M and N ′ ⊂ N such that the same
expression

∑ℓ
i=1mi ⊗ ni = 0 is true in M ′ ⊗N ′.

Proof. In the notation of Definition 3.2, we have
∑ℓ

i=1 emi,ni ∈ K and thus

(3.1)
ℓ∑

i=1

emi,ni =

n∑
j=1

ki

where {em,n}(m,n)∈M×N is the standard basis of F = R⊕(M×N), and each ki
is one of the generators of K as listed in Definition 3.2. The expressions for
the ki, as in Definition 3.2, involve finitely many elements m′1, . . . ,m′r ∈M on
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the left sides of the pure tensors, and finitely many elements n′1, . . . , n′r ∈ N
on the right sides. Thus, (3.1) holds when interpreted in R⊕(M ′×N ′), and so,
construction M ′⊗RN

′ as in Definition 3.2 the desired conclusion follows. □

Corollary 3.11. Let A and B be torsion-free abelian groups2. Then A⊗Z B

is a torsion-free abelian group.

Proof. Assume that 1

(3.2) n
ℓ∑

i=1

ai ⊗ bi = 0

in A⊗ZB (n ∈ N). By Proposition 3.10 there are finitely generated subgroups
A′ of A and B′ of B such that (3.2) holds if interpretted in A′ ⊗B′. But A′

and B′ are torsion-free finitely generated abelian groups, and thus A′ ∼= Zk

and B′ ∼= Zℓ for some k, ℓ ≥ 0. Thus A′ ⊗Z B
′ ∼= Zkℓ is torsion free, and so

(3.3)
ℓ∑

i=1

ai ⊗ bi = 0

when interpretted in A′ ⊗Z B
′. But then (3.3) also holds in A ⊗ B (this

direction always works, going from being zero in the tensor product of the
submodules to that of the modules - think about it!). Thus A⊗ZB is torsion
free. □

Another thing to note is how the base ring can affect the tensor product.
For example, consider the tensors products C2⊗RC3 and C2⊗CC3 (where Cn

is viewed as an R-module in the natural way). First, C2⊗CC3 ∼= C6 as we’ve
seen (which is 12-dimensional over R). But C2⊗RC3 ∼= R4⊗RR6 ∼= R24. This
makes sense: We expect C2 ⊗R C3 to be larger than C2 ⊗C C3 because R is
smaller than C, and so we are making fewer identifications in C2⊗RC3, e.g. in
C2⊗CC3 we have (2i, 3i)⊗(4, 5, 6) = i((2, 3)⊗ (4, 5, 6)) = ((2, 3)⊗ i(4, 5, 6)),
but this is wrong in C2⊗RC3, where we are only allowed to move real scalars
around.

Proposition 3.12. Let M,N,P be R-modules. Then there are natural
isomorphisms (stated in parentheses only for pure tensors, but remember that
in general not all tensors are pure):

(1) Commutativity: M ⊗R N → N ⊗R M

(m⊗ n 7→ n⊗m)
(2) Associativity: (M ⊗R N)⊗RP →MR⊗(N ⊗R P )→M⊗RN⊗RP

(where the rightmost term is defined using R-trilinear maps).
((m⊗ n)⊗ p 7→ m⊗ (n⊗ p) 7→ m⊗ n⊗ p)

2Recall that an abelian group A is torsion free if na ̸= 0 for all 0 ̸= n ∈ Z and 0 ̸= a ∈ A.
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(3) Distributivity: (
⊕

iMi)⊗R P →
⊕

i(Mi ⊗R P ).
((mi)i ⊗ p 7→ (mi ⊗ p)i)

(4) Identity element: R⊗R M →M

(r ⊗m 7→ rm)
(5) Quotients: For submodules M ′ ⊂M , N ′ ⊂ N, (M/M ′)⊗R(N/N

′)→
(M ⊗R N)/L, where L is the R-submodule of M ⊗R N generated by
{m′ ⊗ n | (m′, n) ∈M ′ ×N} ∪ {m⊗ n′ | (m,n′) ∈M ×N ′}.
((m+M ′)⊗ (n+N ′) 7→ m⊗ n+ L)

Proof. This will be in the example sheet. Here we just show the distributivity.
One way to proceed would be to show that

⊕
i∈I(Mi ⊗ P ) satisfies the

universal property of
(⊕

i∈I Mi

)
⊗ P , and the use Proposition 3.5. We will

proceed in another way.
Define an R-bilinear map

(⊕
i∈I Mi

)
× P →

⊕
i∈I(Mi ⊗ P ) by letting(

(mi)i∈I , p
)
7→ (mi ⊗ p)i∈I . This bilinear map gives rise, by the univer-

sal property of
(⊕

i∈I Mi

)
⊗ P , to an R-linear map φ :

(⊕
i∈I Mi

)
⊗ P →⊕

i∈I(Mi ⊗ P ) given on pure tensors by

φ
(
(mi)i∈I ⊗ p

)
= (mi ⊗ p)i∈I .

In the other direction, for each i, define a bilinear map Mi×P →
(⊕

i∈I Mi

)
⊗

P by letting (m, p) 7→ ei(m) ⊗ p (here we write ei(m) ∈
⊕

i∈I Mi for the
element with m in the i-th entry and 0 elsewhere). By the universal property
of Mi ⊗ P , this bilinear map gives rise to an R-linear map ψi : Mi ⊗ P →(⊕

i∈I Mi

)
⊗ P given on pure tensors by

ψi(m⊗ p) 7→ (ei(m))⊗ p .

Now we use the universal property of the direct sum that says that we
can gather all of the ψi into one homomorphism ψ :

⊕
i∈I(Mi ⊗ P ) →(⊕

i∈I Mi

)
⊗ P satisftying

ψ
(
(mi ⊗ p)i∈I

)
= (mi)i∈I ⊗ p .

Finally, we have

(ψ ◦ φ)
(
(mi)i∈I ⊗ p

)
= ψ

(
(mi ⊗ p)i∈I

)
= (mi)i∈I ⊗ p .

Since the pure tensors (mi)i∈I ⊗ p generate
(⊕

i∈I Mi

)
⊗ P as an R-module,

this means that ψ ◦ φ = id(
⊕

i∈I Mi)⊗P . In the other direction, we have

(φ ◦ ψ)
(
(mi ⊗ p)i∈I

)
= φ

(
(mi)i∈I ⊗ p

)
= (mi ⊗ p)i∈I .

But elements of the form (mi ⊗ p)i (i.e. elements of
⊕

i∈I(Mi ⊗ P ) which
are pure tensors in each coordinate) generate

⊕
i∈I(Mi ⊗ P ). Thus φ and ψ

are isomorphisms of R-modules. □
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Remark 3.13. Note that the distributivity property above implies immediately

that for a field k, kn⊗km =
(⊕

1≤i≤n k
)
⊗
(⊕

1≤j≤m k
)
∼=
⊕

i,j

k ⊗ k︸ ︷︷ ︸
∼=k

 ∼=
knm as we’ve seen earlier k⊗k ∼= k follows from the Identity Element property
in Proposition 3.12). This shows that Rn ⊗Rm ∼= Rnm for any ring R (and
in fact, so does our previous proof of kn ⊗ km ∼= knm).

Remark 3.14. From the Quotient property in Proposition 3.12, for ideals I
and J of R, we have

R/I ⊗R R/J ∼= R/(I + J)

via an R-module isomorphism sending (r1 + I)⊗ (r2 + J) 7→ r1r2 + (I + J).
The isomorphism in the other direction is given by r + (I + J) 7→ (r + I)⊗
(r + J). Thus, the kernel of the mapR→ R/I⊗RR/J , r 7→ r((1 + I)⊗ (1 + J))

is I + J . Compare this to the kernel of R→ R/I ×R/J , which is I ∩ J . In
general there is no description of the product ideal IJ of R in terms of a
kernel of a nice map (recall that IJ is the ideal of R generated by the set of
all elements of the form xy, x ∈ I, y ∈ J).

3.1.1. Tensor products of R-linear maps. The following proposition serves as
the definition of the tensor product f ⊗ g of R-linear maps f and g.

Proposition 3.15. For R-linear maps f : M →M ′ and g : N → N ′ there is
exactly one R-linear map (f ⊗ g) : M ⊗N →M ′ ⊗N ′ such that

(f ⊗ g)(m⊗ n) = f(m)⊗ g(n) ∀(m,n) ∈M ×N

Proof. If such a homomorphism exists then it is unique because the pure
tensors generate M ⊗N as an R-module. To prove the existence, consider
the R-bilinear map b : M ×N → M ′ ⊗N ′ given by b(m,n) = f(m) ⊗ g(n)
(check that this is an R-bilinear map!). By the universal property of M ⊗N
we obtain an R-linear map M ⊗N →M ′ ⊗N ′ as desired. □

Exercise 3.16. Show that (f ⊗ g) ◦ (h⊗ i) = (f ◦ h)⊗ (g ◦ i) for R-linear
maps M1

h−→ M2
f−→ M3 and N1

i−→ N2
g−→ N3 (check by evaluating on

pure tensors).

Example 3.17 (Kronecker Product). Let T : ka → kb and S : kc → kd be
k-linear maps (k a field). To simplify the notation, write ei (resp. fi) for the
vector with 1 on the i-th coordinate and 0 elsewhere in ka or kc (resp. kb

or kd). Write [T ] and [S] for the matrices representing T and S w.r.t. these
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standard bases. Then

(T ⊗ S)(ei ⊗ ej) = (Tei)⊗ (Sej)

=

(
b∑

ℓ=1

[T ]ℓifℓ

)
⊗

(
d∑

t=1

[S]tjft

)
=
∑
ℓ,t

[T ]ℓi[S]tj · fℓ ⊗ ft

Now order the k-basis {ei ⊗ ej} of ka⊗kc as follows: e1⊗e1, . . . , e1⊗ec, e2⊗
e1, . . . , e2 ⊗ ec, . . . ea ⊗ ec and similarly for the basis {fℓ ⊗ ft} of kc ⊗ kd.
Representing T ⊗ S according to these ordered bases we have a block matrix
representation:

[T ⊗ S] =

 [T ]11[S] · · · [T ]1a[S]
...

. . .
...

[T ]b1[S] · · · [T ]ba[S]

 ∈Mbd×ac(k) .

The resulting matrix is called the Kronecker product of the matrices [T ] and
[S].

Proposition 3.18. Let f : M → M ′ and g : N → N ′ be R-linear maps.
Then

(1) If f and g are R-module isomorphisms then so is f ⊗ g.
(2) If f and g are surjective then so is f ⊗ g.

Proof. (1) In this case f−1 ⊗ g−1 is a two-sided inverse for f ⊗ g and an
R-linear map.

(2) The image of f ⊗ g is an R-submodule of M ′ ⊗R N
′, and so it suffices

to show that this image contains every pure tensor of M ′ ⊗R N
′, but this is

clear. □

What about injectivity?

Example 3.19. Consider the function f : Z→ Z such that f(x) = px, and
the identity map id : Z/pZ→ Z/pZ. Both are injective Z-linear maps. But

(f ⊗ id)(a⊗ b) = (pa)⊗ b = a⊗

 pb︸︷︷︸
=0

 = 0 ,

that is, f ⊗ id : Z⊗Z (Z/pZ)︸ ︷︷ ︸
∼=Z/pZ

→ Z⊗Z (Z/pZ)︸ ︷︷ ︸
∼=Z/pZ

is the zero map, which is not

injective.
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3.2. Tensor products of algebras. Let B,C be algebras over a ring R.
Considering B,C as R-modules, we can construct the module B⊗C. We can
make the module B⊗C into a ring by defining (b⊗ c)(b′ ⊗ c′) = (bb′)⊗ (cc′),
and extending R-linearly. Since there can be more than one way to write
a tensor as a sum of pure tensors, we must show that this is indeed well
defined.

(1) The multiplication map on B ⊗R C:
(a) We have an R-linear isomorphism f : (B ⊗ C) ⊗ (B ⊗ C) →

(B ⊗B)⊗ (C ⊗ C) given by (b1 ⊗ c1)⊗ (b2 ⊗ c2) 7→ (b1 ⊗ b2)⊗
(c1 ⊗ c2).

(b) We also have the multiplication maps B×B → B and C×C → C,
sending (b1, b2) 7→ b1b2 and (c1, c2) 7→ c1c2.

(c) Both are R-bilinear, and so give rise to R-linear maps mB : B ⊗
B → B and mC : C ⊗ C → C, given on pure tensors by
mB(b1 ⊗ b2) = b1b2 and mC(c1 ⊗ c2) = c1c2.

(d) So, we have an R-bilinear map (B ⊗B) × (C ⊗ C) → B ⊗ C
satisfying (b1 ⊗ b2, c1 ⊗ c2) 7→ b1b2 ⊗ c1c2.

(e) This gives rise to an R-linear map g : (B ⊗B)⊗(C ⊗ C)→ B⊗C
satisfying (b1 ⊗ b2)⊗ (c1 ⊗ c2) 7→ b1b2 ⊗ c1c2.

(f) The composite map g◦f : (B ⊗ C)⊗(B ⊗ C)→ B⊗C is R-linear
and satisfies (b1 ⊗ c1)⊗ (b2 ⊗ c2) 7→ b1b2 ⊗ c1c2.

(g) This gives rise to an R-bilinear map m : (B ⊗ C)× (B ⊗ C)→
B ⊗ C satifying (b1 ⊗ c1, b2 ⊗ c2) 7→ b1b2 ⊗ c1c2.

(h) This m is our multiplication map.
(i) This multiplication is distributive since m is bilinear. Verifying

the rest of the ring axioms is left to the reader.
(2) Making B ⊗R C into an R-algebra:

(a) B⊗C is a B-algebra via the ring homomorphism b 7→ b⊗1: B →
B ⊗ C.

(b) B⊗C is a C-algebra via the ring homomorphism c 7→ 1⊗c : B →
B ⊗ C.

(c) Since B and C are R-algebras, we have their structure ring
homomorphisms R→ B and R→ C.

(d) Overall, we obtain to ring homomorphisms R→ B⊗C: r 7→ r⊗1
and r 7→ 1⊗ r.

(e) They are identical: r ⊗ 1 = r(1⊗ 1) = 1⊗ r.
(f) So, B⊗C is an R-algebra via the ring homomorphism R→ B⊗C

sending r 7→ r(1⊗ 1). Note that in general r(1⊗ 1) is equal to
both r ⊗ 1 and 1⊗ r, but not to r ⊗ r.
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Warning: There seems to a mistake in Atiyah–Macdonald regarding how to
make the ring B ⊗R C into an R-algebra.

Lemma 3.20 (Upgrading an R-linear map to a R-algebra homomorphism).
Let f : A→ B be an R-linear map between R-algebras, R a ring. Let S ⊂ A be
a set generating A as an R-module. Assume that f(1A) = 1B and f(a1a2) =
f(a1)f(a2) for all a1, a2 ∈ S. Then f is an R-algebra homomorphism.

Proof. The map f is additive and f(1A) = 1B. Also, f(r · 1A) = r · f(1A) =
r · 1B since f is R-linear. It remains to show that f is multiplicative:

f

[ n∑
i=1

riai

]
·

 n∑
j=1

r′ja
′
j

 =
∑
i,j

rir
′
jf
(
aia
′
j

)
=
∑
i,j

rir
′
jf(ai)f

(
a′j
)

=

[∑
i

rif(ai)

]∑
j

r′jf
(
a′j
)

= f

(∑
i

riai

)
f

∑
j

r′ja
′
j


for n ≥ 0, ri, r′i ∈ R, ai, a′j ∈ S. □

Now, if A and B are R-algebras, generated as R-modules by SA and SB re-
spectively, thenA⊗RB is generated as anR-module by {a⊗ b | a ∈ SA, b ∈ SB}
(this is just a subset of the set of pure tensors, but it already generates).
Thus:

Corollary 3.21. Let A, B and C be R-algebras (R a ring). Let SA and
SB be generating sets for A and B, respectively, as R-modules. Let f : A⊗R

B → C be an R-linear map such that f(a1a2 ⊗ b1b2) = f(a1 ⊗ b1)f(a2 ⊗ b2)
for all a1, a2 ∈ SA and b1, b2 ∈ SB, and f(1A ⊗ 1B) = 1C . Then f is a
homomorphism of R-algebras.

Example 3.22. Consider the R-algebras R[X1, . . . , Xn] and R[T1, . . . , Tr]

(polynomial algebras over R). We wish to find an R-algebra isomorphism

φ : R[X1, . . . , Xn]⊗R R[T1, . . . , Tr]
∼→ R[X1, . . . , Xn, T1, . . . , Tr] .

As R-modules, both sides are free with a R-free basis of cardinality ℵ0.
So they are isomorphic in many ways as R-modules, but we wish to have
an R-algebra isomorphism. We know that the LHS has the following free
basis over R: the set of all pure tensors a⊗ b where a ∈ R[X1, . . . , Xn] and
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b ∈ R[T1, . . . , Tr] are monomials3. So we have an R-module isomorphism
φ given on this basis by φ(a⊗ b) = ab (check that it sends an R-basis to
an R-basis). We have φ(1⊗ 1) = 1. For monomials a1, a2 ∈ R[X1, . . . , Xn]

and b1, b2 ∈ R[T1, . . . , Tr], we have φ(a1a2 ⊗ b1b2) = a1a2b1b2 = a1b1a2b2 =

φ(a1 ⊗ b1)φ(a2 ⊗ b2). So φ is an R-algebra isomorphism by the corollary (see
also Example 3.26 below, where this is done in a different way).

Now, let’s take ideals I and J of R[X1, . . . , Xn] and R[T1, . . . , Tr], respec-
tively. Using the Quotients part of Proposition 3.12, we have an R-linear
isomorphism

R[X1, . . . , Xn]/I⊗RR[T1, . . . , Tr]/J
∼→ (R[X1, . . . , Xn]⊗R R[T1, . . . , Tr])/L ,

where L is the submodule generated by

{p⊗ q | p ∈ I, q ∈ R[T1, . . . , Tr]} ∪ {g ⊗ h | g ∈ R[X1, . . . , Xn], h ∈ J} .

Under the isomorphism φ from the previous paragraph, L is mapped onto
the ideal Ie + Je of R[X1, . . . , Xn, T1, . . . , Tr] (where Ie is the extension
of I to R[X1, . . . , Xn, T1, . . . , Tr], i.e. the ideal of R[X1, . . . , Xn, T1, . . . , Tr]

generated by I). Thus,

R[X1, . . . , Xn]/I ⊗RR[T1, . . . , Tr]/J ∼= R[X1, . . . , Xn, T1, . . . , Tr]/(I
e + Je) .

.
For example,

C[X,Y, Z]/(f, g)⊗ C[W,U ]/(h) ∼= C[X,Y, Z,W,U ]/(f, g, h)

as C-algebras, by an isomorphism sending a pure tensor (p+ (f, g))⊗(q + (h))

to pq + (f, g, h).

Remark 3.23. [ non-examinable ] In algebraic geometry, the calculation
above shows that the product variety V (f, g)︸ ︷︷ ︸

⊂A3
C

×V (h)︸ ︷︷ ︸
⊂A2

C

(over SpecC) is isomor-

phic to V (f, g, h)︸ ︷︷ ︸
⊂A5

C

. The tensor product of algebras helps us understand what

topology (and further structure) to put on a product of varieties (or schemes).

As we’ve seen before, for R-algebras A and B, we have ring homomorphisms
iA : A→ A⊗RB and iB : B → A⊗RB given by iA(a) = a⊗1 and iB(b) = 1⊗b.
Now:

Proposition 3.24 (The universal property of the tensor product of algebras).
Let A,B be R-algebras. Then:

3In these notes, a monomial is a product of powers of the variables, without a scalar
coefficient. To refer to a product of a scalar and a monomial we shall use the term term.
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(1) For every R-algebra C and R-algebra homomorphisms f1 : A→ C and
f2 : B → C there is exactly one R-algebra homomorphism h : A ⊗R

B → C such that f1 = h ◦ iA and f2 = h ◦ iB.
(2) For every triplet (Q, jA, jB) of R-algebra Q and R-algebra homo-

morphisms jA : A → Q and jB : B → Q that satisfies the universal
property of (A⊗R B, iA, iB) as in (1), there is exactly one R-algebra
homomorphism φ : A⊗RB → Q such that jA = φ◦iA and jB = φ◦iB.

Proof. (1) Take C, f1 and f2 as in the statement. The uniqueness of h
as in the statement follows from the fact that A ⊗R B is generated as an
R-algebra by {a⊗ 1 | a ∈ A} ∪ {1⊗ b | b ∈ B}. Regarding the existence of
h: Define an R-bilinear map A × B → C sending (a, b) 7→ f1(a)f2(b). By
the universal property of A⊗R B as an R-module there is an R-linear map
h : A ⊗R B → C such that h(a⊗ b) = f1(a)f2(b). Clearly f1 = h ◦ iA and
f2 = h ◦ iB . It remains to show that h is an R-algebra homomorphism. First,

h

1A⊗RB︸ ︷︷ ︸
=1A⊗1B

 = 1C . Second, for a1, a2 ∈ A and b1, b2 ∈ B, we have

h(a1a2 ⊗ b1b2) = f1(a1a2)f2(b1b2)

= [f1(a1)f2(b1)] · [f1(a2)f2(b2)]
= h(a1 ⊗ b1)h(a2 ⊗ b2)

and thus h is an R-algebra homomorphism by Corollary 3.21, applied with
SA = A and SB = B (we’re taking the entire modules as the generating sets).

(2) Left to the reader. □

Remark 3.25. [ non-examinable ] In category-theoretic terms, Proposition
3.24 says that the category of R-algebras has coproducts, and that they
are given by tensor products. Being a coproduct just means satisfying the
universal property as in Proposition 3.24. Some coproducts in other categories:
In the category of sets the coproduct is the disjoint union, in groups it is the
free product, in R-modules it is the direct sum.

Example 3.26. We reanalyze Example 3.22. We can show that there is an
R-algebra isomorphism

φ : R[X1, . . . , Xn]⊗R R[T1, . . . , Tr]
∼→ R[X1, . . . , Xn, T1, . . . , Tr]

by showing that the RHS is the coproduct of R[X1, . . . , Xn] and R[T1, . . . , Tr]
(and then invoking Proposition 3.24(2)). First we define R-algebra homomor-
phisms

jA : R[X1, . . . , Xn]→ R[X1, . . . , Xn, T1, . . . , Tr]
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and
jB : R[T1, . . . , Tr]→ R[X1, . . . , Xn, T1, . . . , Tr]

in the natural ways. Now takeR-algebra homomorphisms f1 : R[X1, . . . , Xn]→
C and f2 : R[T1, . . . , Tr]→ C for some R-algebra C. For an R-algebra homo-
morphism

h : R[X1, . . . , Xn, T1, . . . , Tr]→ C ,

satisfying f1 = h◦jA and f2 = h◦jB is equivalent to satisfying h(Xi) = f1(Xi)

and h(Tj) = f2(Tj). There is exactly one such h by the universal property
of the polynomial algebra R[X1, . . . , Xn, T1, . . . , Tr]. This shows that φ as
desired exists by Proposition 3.24(2), and also that φ(p⊗ q) = pq (notice
how this proposition not only tells us that there is an isomorphism, but also
gives us the formula for it on pure tensors). The isomorphism

R[X1, . . . , Xn]/I ⊗R R[T1, . . . , Tr]/J
∼→ R[X1, . . . , Xn, T1, . . . , Tr]/(I

e + Je)

can be constructed in a similar way.
Some further properties (easy to prove):

(1) If f : A→ A′ and g : B → B′ are R-algebra homomorphisms then so
is f ⊗ g : A⊗B → A′ ⊗A (we saw that it is an R-linear map).

(2) Many of our R-linear maps are R-algebra homomorphisms (By Corol-
lary 3.21, it suffices to check that 1 7→ 1 and to check multiplicativity
on a set of R-module generators):
(a) R/I ⊗R R/J ∼= R/(I + J).
(b) A⊗R B ∼= B ⊗R A.
(c) A⊗R (B × C) ∼= (A⊗R B)× (A⊗R C).

(and thus also A⊗R B
n ∼= (A⊗R B)n.

(d) (A⊗R B)⊗R C ∼= A⊗R (B ⊗R C).

3.3. Restriction and extension of scalars.

3.3.1. Modules: Restriction and extension of scalars. Let f : R → S be a
ring homomorphism, and let M be an S-module. Then M is an R-module
via the action rm := f(r)m for all r ∈ R, m ∈ M (in other words, if
ρ : S → EndM is the structural homomorphism of M as an S-module, we let
ρ ◦ f : R→ EndM be the structural homomorphism of M as an R-module).
Making an S-module into an R-module is this way is called restriction of
scalars. Example: For the usual embedding f : R→ C and the C-module Cn,
we obtain the R-module R2n by restriction of scalars.

In the other direction, we have extension of scalars: Keep the ring homo-
morphism f : R→ S. Take an S-module M and an R-module N . Then M
is also an R-module (by restriction of scalars via f), and so we may form
the tensor product M ⊗R N . We shall now give M ⊗R N the structure of an
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S-module. In many situations one takes M = S and considers S ⊗R N , but
we shall require the more general setting.

The S-module structure on M ⊗R N is given on pure tensors by

s(m⊗ n) = (sm)⊗ n ∀s ∈ S m ∈M n ∈ N .

We need to check that this is indeed well defined and makes M ⊗R N into
an S-module:

(1) Fix s ∈ S. We have an R-bilinear map M × N → M ⊗R N given
by (m,n) 7→ (sm)⊗ n. By the universal property of M ⊗R N , this
bilinear map gives rise to an R-linear map hs : M ⊗R N →M ⊗R N

satisfying hs(m⊗ n) = (sm)⊗ n for all s ∈ S, m ∈M , n ∈ N .
(2) Define a function φ : S → End(M ⊗R N) by setting φ(s) = hs. Here,

as usual, End(M ⊗R N) stands for the ring of endomorphisms of
M ⊗R N as an abelian group (hs is an R-module endomorphism, so
certainly also a Z-module endomorphism). It remains to show that φ
is a ring homomorphism, but this is clear (check!).

Example 3.27.

(1) We already know the R-module isomorphism S ⊗R R
∼−→ S given by

s⊗ r 7→ sr. It is in fact an S-module isomorphism since s′(s⊗ r) =
(s′s)⊗ r 7→ (s′s)r = s′(sr). In particular C⊗RR

∼−→ C as C-modules.
(2) For an S-module M and R-modules Ni, i ∈ I, we know an R-module

isomorphism M ⊗R
⊕

i∈I Ni 7→
⊕

i∈I(M ⊗R Ni). Again it can be
easily verified that this is an S-module isomorphism. In particular,
C⊗R Rn ∼−→ Cn as C-modules.

(3) Restrict and then extend: Take the C-module Cn. Restrict scalars
to R and obtain R2n. Extend scalars to C and obtain C⊗RR2n ∼= C2n.

(4) Extend and then restrict: Take the R-module Rn. Extend scalars
to C and obtain C⊗RRn ∼= Cn. Restrict scalars to R and obtain R2n.

(5) Take the Z-module Zn. Extend scalar to Z/nZ and obtain (Z/nZ)⊗Z
Zn ∼= (Z/nZ)n (this is a perfectly valid extension of scalars, even if
it’s not what the common people associate with the word extension).

The extensions in the example above are all of the form S ⊗R N for some
R-module N (and an ambient ring homomorphism f : R → S), where we
sought to understand the S-module structure of S ⊗R N . Here’s an example
of the form M ⊗R N where M is an S-module different from S: What is the
C-module structure on Cn ⊗R Rℓ (i.e. is there a nicer expression for this?).
First, we have an R-module isomorphism

Cn ⊗R Rℓ ∼= R2n ⊗R Rℓ ∼= Cnℓ
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where the second isomorphism follows from the equality of dimensions over
R. Now, surely we can guess how to choose the isomorphism such that
Cn ⊗R Rℓ ∼= Cnℓ becomes a C-module isomorphism (and then verify that
it is indeed one). But, instead, we shall use the following proposition. It
says, in particular, that if we’re going to tensor Rℓ with the C-module Cn

(necessarily tensoring over R) to obtain a C-module (via the extension of
scalars construction), we can first prepare Rℓ by extending scalars to C
(obtaining C ⊗ Rℓ ∼= Cℓ), and then tensor the resulting C-module with Cn

(tensoring over C!). That is:

Cn ⊗R Rℓ ∼= Cn ⊗C

(
C⊗R Rℓ

)
∼= Cn ⊗C Cℓ ∼= Cnl

(and this is a C-module isomorphism by the following proposition). More
generally, the proposition breaks a “complicated” extension of scalars M⊗RN

(M an S-module, N an R-module) into two steps: a simpler extension of
scalars, S ⊗R N , followed by an ordinary tensor product of S-modules.

Proposition 3.28. Let M be an S-module, N an R-module. Then

M ⊗R N ∼=M ⊗S (S ⊗R N)

as S-modules, where the isomorphism sends m⊗ n 7→ m⊗ (1⊗ n) (and in
the other direction (sm)⊗ n←[ m⊗ (s⊗ n)).

Proof. One of the questions in the example sheet is to prove this
statement (or just read the proof below).

We will construct S-linear maps in both directions and verify that they
are inverses. Define an R-bilinear map M ×N →M ⊗S (S ⊗R N) sending
(m,n) 7→ m⊗ (1⊗ n). By the universal property of M ⊗R N , there is an R-
linear map φ : M⊗RN →M⊗S (S ⊗R N) such that φ(m⊗ n) = m⊗(1⊗ n).
In fact, φ is also an S-linear map:

φ

s(m⊗ n)︸ ︷︷ ︸
=(sm)⊗n

 = (sm)⊗ (1⊗ n) = s (m⊗ (1⊗ n))︸ ︷︷ ︸
=φ(m⊗n)

(it suffices to check this on pure tensors).
Now we define an S-linear map in the other direction in several steps. Fix

m ∈ M . Define an R-bilinear map S × N → M ⊗R N sending (s, n) 7→
(sm) ⊗ n. By the universal property of S ⊗R N there is an R-linear map
Hm : S ⊗R N → M ⊗R N such that Hm(s⊗ n) = (sm)⊗ n. Unfix m ∈ M .
Define an S-bilinear map M × (S ⊗R N) → M ⊗R N sending (m,x) 7→
Hm(x) (verify S-bilinearity carefully!). By the universal property of M ⊗S

(S ⊗R N), there is an S-linear map ψ : M ⊗S (S ⊗R N)→M ⊗RN such that
ψ(m⊗ (s⊗ n)) = Hm(s⊗ n) = (sm)⊗ n.
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Take a pure tensor m⊗ n ∈M ⊗R N . Then

(ψ ◦ φ)(m⊗ n) = ψ(m⊗ (1⊗ n))
= Hm(1⊗ n)
= m⊗ n

and thus ψ ◦ φ = idM⊗RN (it suffices to check on the pure tensors since they
generate M ⊗R N as an R-module, a fortiori as an S-module).

Take a pure tensor m⊗


ℓ∑

i=1

si ⊗ ni︸ ︷︷ ︸
=:x

 ∈M ⊗S (S ⊗R N). Then

(φ ◦ ψ)(m⊗ x) = φ(Hm(x))

= φ

(
ℓ∑

i=1

sim⊗ ni

)

=

ℓ∑
i=1

(sim)⊗ (1⊗ ni)︸ ︷︷ ︸
=m⊗(si⊗ni)

= m⊗
ℓ∑

i=1

si ⊗ ni︸ ︷︷ ︸
=x

.

Thus φ ◦ ψ = idM⊗S(S⊗RN) and so φ and ψ are S-module isomorphisms. □

The following theorem is an analogue of Theorem 3.12 in the extension of
scalars setting.

Theorem 3.29. Take S-modules M,M ′ and R-modules N,N ′ (and some
fixed ring homomorphism R→ S). Then there are S-module isomorphisms
(all sending pure tensors to their obvious images):

(1) M ⊗R N
∼−→ N ⊗R M .

(2) (M ⊗R N)⊗R N
′ ∼−→M ⊗R (N ⊗R N

′).
(notices that the LHS involves two extension of scalars, while the RHS
involves one)

(3) (M ⊗R N)⊗S M
′ ∼−→M ⊗S (N ⊗R M

′).
(4) M ⊗R

(⊕
i∈I Ni

) ∼=⊕i∈I(M ⊗R Ni)

(where Ni is an R-module).

Proof. I suggest you plug in R = R, S = C, M = Cn, M ′ = Cn′ , N = Rℓ

and N ′ = Rℓ′ just to get a feeling for what each statement means.
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You can certainly prove this statement by yourself at this point. I will skip
most of the proof. Let’s just do (3) using the associativity of ⊗S (when not
mixed with ⊗R) and using Proposition 3.28:

(M ⊗R N)⊗S M
′ ∼= (M ⊗S (N ⊗R S))⊗S M

′

∼=M ⊗S

(
(N ⊗R S)⊗S M

′)
∼=M ⊗S

(
N ⊗R M

′)
□

The following corollary shows what happens when you take a tensor
product of R-modules and apply S⊗R to it (e.g. what is C⊗R

(
Rℓ ⊗R Rk

)
as a C-module? Although this example is easy actually).

Corollary 3.30. Let N,N ′ be R-modules (as usual, there’s some fixed ring
homomorphism R→ S). Then there is an S-module isomorphism

S ⊗R

(
N ⊗R N

′) ∼= (S ⊗R N)⊗S

(
S ⊗N ′

)
sending s⊗ (n⊗ n′) 7→ s((1⊗ n)⊗ (1⊗ n′)).

Proof. By Theorem 3.29(2) and Proposition 3.28, we have S-module isomor-
phisms

S ⊗R

(
N ⊗R N

′) ∼= (S ⊗R N)⊗R N
′

∼= (S ⊗R N)⊗S (S ⊗R N)

with the isomorphisms sending pure tensors in a way that matches the
statement. □

For example (of Corollary 3.30), as C-modules:

C⊗R

(
Rn ⊗R Rℓ

)
∼= (C⊗R Rn)⊗C

(
C⊗R Rℓ

)
∼= Cn ⊗C Cℓ

∼= Cnℓ

We already knew that because, as C-modules

C⊗R

Rn ⊗R Rℓ︸ ︷︷ ︸
∼=Rnℓ

 ∼= Cnℓ

but now we have a new way to think about this. Note that in Corollary 3.30
we are discussing a simple extension of scalars, i.e. S⊗R. The corollary is not
true for M⊗R for a general S-module M : Indeed (verify using what we’ve
learned), Cn ⊗R

(
Rm ⊗R Rℓ

) ∼= Cnmℓ as C-modules, while (Cn ⊗R Rm) ⊗C(
Cn ⊗R Rℓ

) ∼= Cn2mℓ as C-modules, a contradiction if n ≥ 2.
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Applying Corollary 3.30 repeatedly one can also see that S⊗R(N1 ⊗R · · · ⊗R Nℓ) =

(S ⊗R N1)⊗S · · · ⊗S (S ⊗R Nℓ).

Remark 3.31. An imporant feature of extension of scalars is that it acts on
morphisms and not only on modules. If f : N → N ′ is an R-linear map and
M is an S-module (as usual, some ring homomorphism R→ S lives in the
background), then idM ⊗f : M ⊗R N →M ⊗R N

′, which we already know is
an R-linear map, is an S-linear map. Indeed,

(idM ⊗f)

s(m⊗ n)︸ ︷︷ ︸
=(sm)⊗n

 = (sm)⊗ f(n)︸ ︷︷ ︸
s(m⊗f(n))

= s(idM ⊗f)(m⊗ n) .

As an example, take a linear map T : Rn → Rm and tensor it with the
identity map idC : C→ C. If e1, . . . , en and f1, . . . , fm are R-bases of Rn and
Rm, respectively, then 1⊗ e1, . . . , 1⊗ en and 1⊗ f1, . . . , 1⊗ fm are C-bases
of C⊗R Rn︸ ︷︷ ︸

∼=Cn

and C⊗R Rm︸ ︷︷ ︸
∼=Cm

, respectively. Now, write [T ] for T represented

according to these R-bases. Then

(idC⊗T )(1⊗ ei) = 1⊗ Tei

= 1⊗
m∑
ℓ=1

[T ]ℓifj

=
m∑
ℓ=1

[T ]ℓi(1⊗ fj) ,

and so the matrix representing T according to the C-bases above is exactly
[T ] (interpreted as a matrix with complex entries that all happen to be real).

3.3.2. Algebras: Restriction and extension of scalars. Given two R-algebras
A and B, we constructed a new R-algebra A⊗R B with the structure map
R → A ⊗ B given by r 7→ ρ(r) ⊗ 1 (where ρ : R → A is the structure ring
homomorphism of A as an R-algebra). But A⊗R B is also an A-algebra via
a 7→ a ⊗ 1, and a B-algebra via b 7→ 1 ⊗ b. So the R-algebra structure on
A⊗R B is given by taking either the A- or B- algebra structure on A⊗R B

and restricting scalars to R (the result will be the same).

Example 3.32. We construct a C-algebra homomorphism

φ : C⊗R (R[T1, . . . , Tn])
∼−→ C[T1, . . . , Tn]

The R-bilinear map C× R[T1, . . . , Tn]→ C[T1, . . . , Tn] given by (z, p) 7→ zp

gives rise to an R-linear map φ : C ⊗R R[T1, . . . , Tn] → C[T1, . . . , Tn]. In
fact, φ is C-linear (check!). Next, we show that φ is a C-module isomor-
phism. Indeed, by Theorem 3.29(4), C⊗R (R[T1, . . . , Tn]) is a free C-module
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with basis {1⊗m | m is a monomial in T1, . . . , Tn}. On the other hand,
C[T1, . . . , Tn] is a free C-module with a basis consisting the set of mono-
mials in T1, . . . , Tn. So φ is a C-module isomorphism because it sends a
basis bijectively onto a basis. It is left to check that φ is a C-algebra ho-
momorphism (and thus an isomorphism, because we already know that φ
is bijective). This is easy to verify using Corollary 3.21. We can write
φ−1 explicitly: φ−1

(∑
e=(e1,...,en)∈Zn

≥0
zeT

e1
1 · · ·T en

n

)
=
∑

e=(e1,...,en)∈Zn
≥0
ze⊗

T e1
1 · · ·T en

n , where ze ∈ C (the sum is finite, i.e. almost all ze are zero, because
elements of C[T1, . . . , Tn] are polynomials). In the same way, we have an
S-algebra isomorphism S ⊗R R[T1, . . . , Tn]

∼−→ S[T1, . . . , Tn] w.r.t. any ring
homomorphism f : R → S. The isomorphism sends s ⊗ p 7→ sf̃(p), where
f̃(p) results from p by applying f to each coefficient.

Some additional features (again, it suffices to check multiplicativity on
pure tensors):

(1) Proposition 3.28 has an analogue for algebras: For an R-algebra A
and an S-algebra B, we have an S-algebra structure on A⊗R B (via
B, as we’ve seen), and an S-algebra isomorphism

A⊗R B ∼= (A⊗R S)⊗S B ,

i.e. we are breaking a complicated extension of scalars A⊗R B into a
simpler one A⊗R S, followed by a tensor product of S-algebras.

(2) Corollary 3.30 also extends: For R-algebras A and B, we have an
S-algebra isomorphism

S ⊗R (A⊗R B) ∼= (S ⊗R A)⊗S (S ⊗R B)

sending s⊗ (a⊗ b) 7→ s((1⊗ a)⊗ (1⊗ b)).

3.4. Exactness properties of the tensor product.

3.4.1. The tensor-with-M functor is right exact. Fix an R-module M . We
have a functor TM from the category of R-modules to itself, taking an R-
module N to TM (N) :=M ⊗R N , and taking an R-linear map f : N → N ′

to TM (f) := idN ⊗f (the term functor means that TM acts both on the
objects and the morphisms of the category of R-modules, and that it sends
identity morphisms to identity morphisms and respects the composition of
morphisms).

We aim to show that if

A
f−→ B

g−→ C −→ 0

is an exact sequence of R-modules, and M any R-module, then

M ⊗A idM ⊗f−→ M ⊗B idM ⊗g−→ M ⊗ C −→ 0
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is an exact sequence. In other words, we want to show that TM is a right-exact
functor. We proceed in several steps, but first - an application.

Remark 3.33.

(1) What can we say about M ⊗R (P/Q) for R-modules M,P,Q (Q a
submodule of P )? Consider the exact sequence

Q
ι−→ P

π−→ P/Q −→ 0

where ι and π are the inclusion and quotient maps, respectively. Since
TM (·) is right exact (see Proposition 3.37 below), we have an exact
sequence

M ⊗Q idM ⊗ι−→ M ⊗ P idM ⊗π−→ M ⊗ (P/Q) −→ 0 .

That is, idM ⊗π is surjective, and its kernel is K := (idM ⊗ι)(M ⊗Q),
i.e. K is the submodule ofM⊗P generated by {m⊗ q | m ∈M, q ∈ Q}
(as discussed earlier, the map idM ⊗ι does not have to be injective).
Thus, we have an R-linear isomorphism

φ : (M ⊗ P )/ (idM ⊗ι)(M ⊗Q)︸ ︷︷ ︸
=K

∼−→M ⊗ (P/Q)

such that φ((m⊗ p) +K) = m⊗(p+Q), and so φ−1(m⊗ (p+Q)) =

(m⊗ p) +K.
(2) Now, consider R-algebras S and T , and an ideal I of T . We study

S ⊗R (T/I). The first part of this remark gives us an R-linear
isomorphism ψ : S ⊗R (T/I) ∼= (S ⊗R T )/J , J = (idS ⊗ι)(S ⊗R I).
In fact, while the first part only guaranteed that J is an R-submodule
of S⊗RT , it is in fact an ideal of S⊗RT , generated by {1⊗ x | x ∈ I}
(check!), and ψ is an S-algebra isomorphism. In other words, J is
the ideal of S ⊗R T generated by the image of I under the ring
homomorphism T → S ⊗R T given by t 7→ 1⊗ t.

(3) For example, C ⊗R (R[T1, . . . , Tn]/I) ∼= (C⊗R R[T1, . . . , Tn])/J ∼=
C[T1, . . . , Tn]/Ie as C-algebras, where Ie is the extension of I to
C[T1, . . . , Tn], i.e. the ideal of C[T1, . . . , Tn] generated by I (we used
the result of Example 3.32).

Definition 3.34. For R-modules Q and P , let HomR(Q,P ) be the set of
R-linear maps Q → P , equipped with the R-module structure where the
addition is pointwise addition of functions, and the R-action is given by

(rf)(x) = r(f(x)) ∀r ∈ R f ∈ HomR(Q,P ) x ∈ Q

(check that rf is in HomR(Q,P ) and that HomR(Q,P ) is an R-module).
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Fix R-modules Q,P . Then we have two new functors from the category of
R-modules to itself:

HomR(Q, ·)
HomR(·, P )

These are defined for an R-linear map f : M → N by:

HomR(Q,M)
HomR(Q,f)−→ HomR(Q,N)

is given by φ 7→ f∗(φ) := f ◦ φ, and

HomR(N,P )
HomR(f,P )−→ HomR(M,P )

is given by φ 7→ f∗(φ) := φ ◦ f .
Notice how HomR(·, P ) reverses the direction of the morphism. For this

reason we say that HomR(·, P ) is a contravariant functor (while Hom(Q, ·)
and TM are covariant functors).

The following proposition is easy to prove (see Example Sheet 2):

Proposition 3.35 (The Hom functors are left exact).

(1) If

0 −→ A
f−→ B

g−→ C

is an exact sequence of R-module then so is

0 −→ HomR(Q,A)
f∗−→ HomR(Q,B)

g∗−→ HomR(Q,C) .

(2) If

A
f−→ B

g−→ C −→ 0

is an exact sequence of R-module then so is

0 −→ HomR(C,P )
g∗−→ HomR(B,P )

f∗
−→ HomR(A,P ) .

Lemma 3.36. Consider R-linear maps

(3.4) A
f−→ B

g−→ C

such that for every R-module P , the following sequence is exact:

(3.5) HomR(C,P )
g∗−→ HomR(B,P )

f∗
−→ HomR(A,P ) .

Then (3.4) is exact.
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Proof. First plug in P = C. By the exactness of (3.5), 0 = f∗(g∗(idC)) = g◦f .
That is, im f ⊂ ker g.

Now plug4 in P = B/ im f , and consider the quotient map h : B → B/ im f .
Clearly h ∈ ker f∗, and thus the exactness of (3.5) implies that there is
e ∈ HomR(C,B/ im f) such that e ◦ g = h. Thus, ker g ⊂ kerh = im f . □

For R-modules M,N,L, we have already seen a bijection

HomR(M ⊗R N,L)
∼−→ BilinR(M ×N,L)

which reflects the universal property of M ⊗R N : Each R-bilinear map
M ×N → L corresponds to a single R-linear map M ⊗R N → L (write to
yourself what the bijections are in both directions). But

BilinR(M ×N,L)
∼−→ HomR(N,HomR(M,L))

by a bijection sending an R-bilinear map b : M ×N → L to

n 7→ (m 7→ b(m,n))

(convince yourself that this is a well defined bijection). All, in all, we have a
bijection

(3.6) HomR

M ⊗R N︸ ︷︷ ︸
=TM (N)

, L

 ∼−→ HomR(N,HomR(M,L)) .

(in category theoretic language, the fact that this set bijection is natural5

in both arguments implies that TM (·) and HomR(M, ·) form an adjoint pair,
with TM (·) being the left adjoint, and HomR(M, ·) the right adjoint).

Proposition 3.37. Let M be an R-module. Then the functor TM is right
exact.

Proof. Take an exact sequence of R-modules:

A
f−→ B

g−→ C −→ 0

Let P be an R-module. Apply HomR(·, P ) and then HomR(M, ·) to obtain
the exact sequence (see Proposition 3.35):

0→ HomR(M,HomR(C,P ))→ HomR(M,HomR(B,P ))→ HomR(M,HomR(A,P ))

But by (3.6), this sequence is isomorphic to the following sequence (to be
completely formal, one needs to draw a little commutative diagram here,
representing an isomorphism of sequences):

0→ HomR(M ⊗ C,P )→ HomR(M ⊗B,P )→ HomR(M ⊗A,P ) ,

4B/ im f is called the cokernel of f , denoted by coker f .
5Whatever that means (we will only mention category theoretic notions in passing in

this course).
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so the latter sequence is exact. Since this is true for every R-module P ,
Lemma 3.36 implies that

M ⊗A→M ⊗B →M ⊗ C → 0

is exact. □

Remark 3.38. [ Non-examinable ] The general principle here is that a left
adjoint functor is right exact, and a right adjoint functor is left exact. The
more general principle is that a left adjoint functor is continuous (commutes
with limits of categorical diagrams), and a right adjoint functor is cocontinuous
(commutes with colimits). This is relevant to exact sequences because kernels
are limits and cokernels colimits. The natural isomorphism M ⊗ (A⊕B) ∼=
(M ⊗A)⊕ (M ⊗B) is another instance of this phenomenon: The direct sum
is the coproduct (and so, a colimit) in the category of R-modules, and TM is
cocontinuous, and thus tensoring before or after taking a direct sum gives
the same result (up to a natural isomorphism).

Warning: It sometimes happens that

A→ B → C

is an exact sequence of R-modules, but

M ⊗A→M ⊗B →M ⊗ C

isn’t (i.e. the extra→ 0 on the right is crucial for the preservation of exactness
by TM ). See the following example (but first, if you think about it for a
second, a functor that preserves all exact sequences of length 3 must preserve
all exact sequences, so we really did not expect TM to do that).

Example 3.39. Consider the exact sequence of Z-modules

0 −→ Z x 7→2x−→ Z .

Tensoring with Z/2Z (by which we mean as usual that we tensor the objects
with Z/2Z and the morphisms with idZ/2Z), we have

0 −→ Z/2Z⊗ Z
idZ/2Z⊗(x 7→2x)
−→ Z/2Z⊗ Z ,

which is equivalent to

0 −→ Z/2Z x+2Z 7→2x+2Z−→ Z/2Z ,

which is not exact.
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We take this opportunity to introduce the notion of a morphism of sequences
using the example above. We have a diagram

0 //

��

Z/2Z⊗ Z
(a+2Z)⊗b7→(a+2Z)⊗(2b)

//

(a+2Z)⊗b7→ab+2Z
��

Z/2Z⊗ Z

(a+2Z)⊗b 7→ab+2Z
��

0 // Z/2Z x+2Z7→2x+2Z // Z/2Z

where each square commutes (i.e. the composition of right and down is equal
to the composition of down and right). This is an instance of a commutative
diagram.

The notion of composition of morphisms of sequences is defined in the
obvious way. An isomorphism of sequences is a morphism that has a two-
sided inverse. Equivalently, an isomorphism of sequences is a morphism of
sequences where all the vertical arrows are isomorphisms (check that the two
defintions are equivalent). This notion of an isomorphism is the one we need
in order to think of two sequences as essentially the same.

3.4.2. Flat modules - a first encounter.

Definition 3.40. An R-module M is flat if for every R-linear map f : N →
N ′, if f is injective then so is idM ⊗f .

Example 3.41.
(1) Example 3.39 shows exactly that the Z-module Z/2 is not flat: ten-

soring the injective map Z x 7→2x−→ Z with Z/2Z results in the zero map
Z/2Z→ Z/2Z.

(2) Free modules are flat: If f : M →M ′ is an injective R-linear map then
idR⊕I ⊗f : R⊕I ⊗M → R⊕I ⊗M ′ is equivalent to the map M⊕I →
M ′⊕I the sends (mi)i∈I 7→ (f(mi))i∈I , which is certainly injective
(the equivalence is in the sense of an isomorphism of sequences as
defined above). In the example sheet you will prove a generalization:
Projective modules are flat.

(3) The base ring matters: Notice that Z/2Z is flat as a Z/2Z-module
(a very special case of a free module), but not as a Z-module.

(4) A generalization of the first example: An R-module M is torsion
free if rm ≠ 0 whenever r ∈ R is not a zero divisor and m ̸= 0 (this
generalizes the notion of a torsion-free abelian group, i.e. Z-module,
noting that in Z the only zero divisor is 0).
Flat modules are torsion free: Assume that M is not torsion free.
Then there is r0 ∈ R, not a zero divisor, and 0 ̸= m0 ∈ M , such
that r0m0 = 0. Now, the map µr0 : R→ R given by µr0(r) = r0r is
injective since r0 is not a zero divisor. But idM ⊗µr0 : M⊗R→M⊗R,
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m⊗r 7→ m⊗ (r0r)︸ ︷︷ ︸
=(r0m)⊗r

is not injective because it sends m0⊗1 to 0, while

m0⊗1 ̸= 0 because under the isomorphism M ⊗R ∼= R, m⊗ r 7→ rm,
m0 ⊗ 1 is mapped to m0 ̸= 0.

(5) A special case of the previous point: If (0) ⊊ I ⊊ R is an ideal of an
integral domain R then M = R/I is not a flat R-module. Indeed, M
is not a torsion-free R-module: Take 0 ̸= r ∈ I. Then r is not a zero
divisor since R is an integral domain, but the map m 7→ rm : M →M

is the zero map, while M is not the zero module.

Proposition 3.42 (Characterization of flat modules). Let M be an R-module.
The following are equivalent:

(1) TM preserves the exactness of all exact sequences.
(2) TM preserves the exactness of short exact sequences6.
(3) M is flat (i.e. preserves the exactness of exact sequences of the form

0→ N ′ → N).
(4) M is “flat for finitely generated R-modules”: If N f−→ N ′ is injective

and N,N ′ are finitely generated R-modules, then M ⊗R N
idM ⊗f−→

M ⊗R N is injective.

Proof. Clearly (1)⇒(2)⇒(3)⇒(4) [ why (2)⇒(3)? ].
(2)⇒(1) [ in class I will draw a nice diagram ] Assume that A f−→

B
g−→ C is exact. Consider the following short exact sequences:

0 −→ ker f −→ A
f−→ im f −→ 0

0 −→ ker g︸︷︷︸
=im f

−→ B
g−→ im g −→ 0

0 −→ im g −→ C −→ C/ im g −→ 0

Applying M ⊗ (·) to each sequence, exactness is preserved:

(3.7) 0 −→M ⊗ ker f −→M ⊗A idM ⊗f−→ M ⊗ im f −→ 0

(3.8) 0 −→M ⊗ ker g︸︷︷︸
=im f

−→M ⊗B idM ⊗g−→ M ⊗ im g −→ 0

(3.9) 0 −→M ⊗ im g −→M ⊗ C −→M ⊗ C/ im g −→ 0

Consider the sequence

(3.10) M ⊗A idM ⊗f−→ M ⊗B idM ⊗g−→ M ⊗ C

6Recall: A short exact sequence is an exact sequence of the form 0 → N ′ → N →
N ′′ → 0.
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Then

im(M ⊗A→M ⊗B) = im(M ⊗A→M ⊗ im f →M ⊗B)

= im(M ⊗ im f →M ⊗B)

because M⊗A→M⊗im f is surjective by the exactness of (3.7) at M⊗im f .
But now

im

M ⊗ im f︸︷︷︸
=ker g

→M ⊗B

 = ker(M ⊗B →M ⊗ im g)

by the exactness of (3.8) at M ⊗B. And now,

ker(M ⊗B →M ⊗ im g) = ker

M ⊗B →M ⊗ im g →M ⊗ C︸ ︷︷ ︸
=M⊗B→M⊗C


because M ⊗ im g →M ⊗C is injective by the exactness of (3.9) at M ⊗ im g.
This shows that (3.10) is exact.

(3)⇒(2): Follows since TM is right exact (Proposition 3.37).
(4)⇒(3): I suggest trying to prove this yourself before reading the

proof below.
Take an injective R-linear map f : N → N ′, and take

∑
mi ⊗ ni ∈

ker(idM ⊗f : M ⊗N →M ⊗N ′). Then

(3.11)
∑

mi ⊗ f(ni) = 0

(in M ⊗N ′).
Let N0 be the submodule of N generated by the ni.
By Proposition 3.10, there are finitely generated submodules M0 of M

and N ′0 of N ′ such that (3.11) holds in M0 ⊗N ′0. Then (3.11) also holds in
M0 ⊗ (N ′0 + f(N0)).

Consider idM0 ⊗(f |N0) : M0⊗N0 →M0⊗(N ′0 + f(N0)). Then
∑
mi⊗ni,

as an element M0⊗N0, is sent to 0, and thus (4) implies that
∑
mi⊗ni = 0

in M0 ⊗N0. Thus
∑
mi ⊗ ni = 0 also in M ⊗N . □

Proposition 3.43 (Extension of scalars preserves flatness). Let f : R→ S

be a ring homomorphism, and take a flat R-module M . Then S ⊗R M is a
flat S-module.

Proof. Let g : N → N ′ be an injective S-linear map. We have a commutative
diagram

(S ⊗R M)⊗S N
idS⊗RM ⊗g

//

(s⊗m)⊗n7→m⊗(sn)
��

(S ⊗R M)⊗S N
′

(s⊗m)⊗n′ 7→m⊗(sn′)
��

M ⊗R N
idM ⊗g // M ⊗R N

′
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The commutativity of the diagram is clear (just follow with pure tensors).
The vertical arrows are S-module isomorphisms by Proposition 3.28. Thus,
the injectivity of the bottom arrow implies the injectivity of the top arrow
by basic diagram chasing7. □

Remark 3.44. The non-left-exactness of TM for a non-flat module M seems
like a caveat, but it also opens the door to a very rich study of modules via
tools of homological algebra.

Remark 3.45. [ non-examinable ] If you want to know more about flat
modules, your next steps could be to learn the following:

(1) Note that for every ideal I of R and R-module M , we have a surjective
R-linear map I⊗RM → IM , i⊗m 7→ im, where IM is the submodule
of M generated by {im | i ∈ I,m ∈M}.
(a) Proposition A: M is flat if and only if this R-linear map

I ⊗R M → IM is also injective for every finitely generated ideal
I of M .

(b) Clearly, this condition is necessary for flatness: The inclusion
I ↪→ R is R-linear and injective, and tensoring with idM gives
the map above, which much also be injective if M is flat.

(2) A second worthy goal is to learn enough homomological algebra to
understand the following proposition:
(a) Proposition B: The map I ⊗M → IM above is injective if

and only if Tor1(R/I,M) = 0.
(b) Proposition B can be used to prove Proposition A.

3.5. Further examples of tensor products.

Example 3.46. For x⊗ y ∈ Q⊗Z Z/nZ, we have

x⊗ y =
(
n
x

n

)
⊗ y =

x

n
⊗ ny︸︷︷︸

=0

and so Q⊗Z Z/nZ = 0. What properties of the abelian groups Q and Z/nZ
did we use?

(1) A = Q is a divisible group (i.e. for all n ≥ 1 and a ∈ A there is
a′ ∈ A such that na′ = a).

(2) B = Z/nZ is a torsion group (i.e. every element of B has finite
order).

7The chase in this case: Start with x ∈ (S ⊗R M)⊗B N such that going right makes it
0. So going right then down also brings x to 0. Thus going down and then right brings x

to 0. The injectivity of the bottom row implies that just going down brings x to 0. But
the left arrow is an S-module isomorphism, and thus x = 0.
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So, A⊗Z B = 0 whenever A is a divisible group8 and B is an abelian torsion
group. Now, Q/Z is a torsion divisible group, and thus

(Q/Z)⊗2 = 0 .

On the other hand:

Proposition 3.47. If M ̸= 0 is a finitely generated R-module then M⊗n ̸= 0

for all n ≥ 1.

Proof. See the example sheet. □

Above, we referred to the tensor power M⊗n. More generally, one may form
a tensor product M1⊗M2⊗· · ·⊗Mn of R-modules. It is defined similarly to
the case n = 2. We haveM1⊗(M2 ⊗M3) ∼=M1⊗M2⊗M3

∼= (M1 ⊗M2)⊗M3

naturally (which can be used to prove the associativity of the tensor product).
Also, M1⊗M2⊗· · ·⊗Mn is characterized by a universal property in terms of
R-multilinear maps, analogous to the universal property of M ⊗N in terms
of bilinear maps. We will not spell out the precise definition because it is a
trivial generalization, but you are expected to understand what the definition
is (or read somewhere).

Example 3.48. Let V be a Q-vector space. Then we know that Q⊗QV ∼= V

by the isomorphism x⊗ v 7→ xv. Notice that every tensor in Q⊗Q V is pure:∑
xi ⊗ vi =

∑
1⊗ xivi = 1⊗

∑
xivi .

What about Q ⊗Z V ? Is every tensor still pure? We are only allowed to
move elements of Z across the ⊗ sign, but still we have an affirmative answer
(below ai, bi ∈ Z): ∑ ai

bi
⊗ vi =

∑ 1

bi
⊗ aivi

=
∑ 1

bi
⊗ aibi

bi
vi

=
∑

1⊗ ai
bi
vi

= 1⊗
∑ ai

bi
vi .

So what is Q⊗ZV (here we restrict scalars from Q to Z on V , and then extend
scalars to Q again)? The Z-bilinear map Q × V → V sending (x, v) 7→ xv

gives rise to a Z-linear map φ : Q⊗ZV → V such that φ(x⊗ v) = xv. Clearly
φ is surjective and sends nonzero pure tensors to nonzero elements. But every
tensor in Q⊗Z V is pure, and thus φ is injective, that is, an isomorphism of
Z-modules (check that it is also an isomorphism of Q-modules).

8Divisible groups are abelian by definition.
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The proof above generalizes trivially to show that9 Frac(R) ⊗R V ∼= V

as Frac(R)-modules whenever R is an integral domain and V is a Frac(R)-
module. We can even generalize further:

Proposition 3.49. Let R be an integral domain and V a FracR-module.
Let M ≠ 0 be an R-submodule of FracR. Then M ⊗R V ∼= V as R-modules
by an isomorphism sending m⊗ v 7→ mv.

Proof. See the example sheet. You can still prove that all tensors are pure,
but this is a bit more subtle. Then injectivity follows easily. It is also less clear
than before why the map is surjective, so a short explanation is required. □

Example 3.50. Consider R = Z
[√
−5
]

(so FracR = Q
(√
−5
)
), and an ideal

I of Z
[√
−5
]

(so I is a Z
[√
−5
]
-submodule of Q

(√
−5
)
). If I is principal

then10 R ∼= I as R-modules, and thus certainly I⊗RFracR ∼= R⊗RFracR ∼=
FracR.

For a nonprincipal ideal I of R, we have R ≇ I as R-modules because R
can is generated as an R-module by 1R, while I cannot be generated by a
single element. For example I =

(
2, 1 +

√
−5
)

is nonprincipal (proof omitted;
if you really want to you can use the field norm of Q

(√
−5
)
/Q to prove this).

But still we have
(
2, 1 +

√
−5
)
⊗Z[
√
−5] Q

(√
−5
) ∼= Q

(√
−5
)

by Proposition
3.49.

Remark 3.51. The argument in Example 3.48 raises the question of whether
an R-linear map f : M ⊗R N → L that is injective on pure tensors must be
injective. The answer is negative. You will be asked to consider this question
in the example sheet.

Example 3.52. We have a nice R-module isomorphism M ⊗R
⊕

i∈I Mi
∼−→⊕

i∈I M ⊗RMi given by m⊗ (mi)i∈I 7→ (m⊗mi)i∈I . The same formula also
gives an R-linear map M ⊗R

∏
i∈I Mi −→

∏
i∈I M ⊗R Mi, which in general

is not an isomorphism. Let’s see an example where these two R-modules
are not even isomorphic. On one hand,

∏
n≥1Q⊗Z Z/pnZ = 0 (why?). On

the other hand Q⊗Z
∏

n≥1 Z/pnZ is not the zero module. Indeed, take an
element x ∈

∏
n≥1 Z/pnZ of infinite order (say x = (1, 1, 1, . . . )). Write ⟨x⟩

for the subgroup of
∏

n≥1 Z/pnZ generated by x. Then Q⊗Z ⟨x⟩︸︷︷︸
∼=Z

∼= Q ≠ 0.

But Q is a flat Z-module (see later, or prove directly), and so tensoring the
inclusion ⟨x⟩ ↪→

∏
n≥1 Z/pnZ with Q results in an embedding of the nonzero

module Q⊗Z ⟨x⟩ in Q⊗Z
∏

n≥1 Z/pnZ.

9Here FracR is the field of fractions of an integral domain R.
10In general, for a principal ideal I = (x) of a ring R, we have a surjective R-linear map

R → I, r 7→ rx, which is also injective when R is a domain and x ̸= 0.
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Example 3.53. What is C⊗R C? First, as an R-module, the right copy of
C has an R-basis {1, i}. Treating C ⊗R C as an extension of scalars of the
right copy from R to C, we see that {1⊗ 1, 1⊗ i} is a C-basis for C⊗R C.

Furthermore, we have C-algebra homomorphisms

C⊗R C ∼= C⊗R
(
R[T ]/

(
T 2 + 1

))
∼= C[T ]/((T − i)(T + i))

∼= C[T ]/(T − i)× C[T ]/(T + i)

∼= C× C

(the third equality used the Chinese Remainder Theorem, see the example
sheet). What is the isomorphism?a+ bi︸ ︷︷ ︸

=:x

⊗
c+ di︸ ︷︷ ︸

=:y

 7→ (a+ bi)⊗
(
c+ dT +

(
T 2 + 1

))
7→ (a+ bi)(c+ dT )︸ ︷︷ ︸

ac+bdiT+ibc+Tad=:P

+
(
T 2 + 1

)
7→ (P + (T − i), P + (T + i))

7→ ((ac− bd) + i(bc+ ad), (ac+ bd) + i(bc− ad))
= (xy, xy) .

What are the elements of C⊗RC that are mapped to (1, 0) and (0, 1)? Recall

that as a C-module, C ⊗R C is of dimension 2, with basis

1⊗ 1︸ ︷︷ ︸
=v1

, 1⊗ i︸︷︷︸
=v2

.

We take α, β ∈ C, and compute our isomorphism φ : C⊗R C ∼−→ C× C:

(3.12) αv1 + βv2︸ ︷︷ ︸
=α⊗1+β⊗i

7→ (α, α) + (βi,−βi)︸ ︷︷ ︸
=(α+βi,α−βi)

and thus
1

2
v1 −

i

2
v2︸ ︷︷ ︸

=:u1

7→ (1, 0)

1

2
v1 +

i

2
v2︸ ︷︷ ︸

=:u2

7→ (0, 1) .

In other words, the basis {u1, u2} =
{
1
2 ⊗ 1− i

2 ⊗ i,
1
2 ⊗ 1 + i

2 ⊗ i
}

makes
the multiplication in C⊗R C very simple:

(α1u1 + β1u2)(α2u1 + β2u2) = (α1α2)u1 + (β1β2)u2 .
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Indeed,

(α1u1 + β1u2)(α2u1 + β2u2) = φ−1

φ(α1u1 + β1u2)︸ ︷︷ ︸
=(α1,β1)

φ(α2u1 + β2u2)︸ ︷︷ ︸
=(α2,β2)


= φ−1(α1α2, β1β2)

= (α1α2)u1 + (β1β2)u2 .

The somewhat alert yet not fully alert reader might find the following
“contradiction”: If in (3.12) we write α(1⊗ 1)+β(1⊗ i) = 1⊗α+1⊗βi and
compute, we get a different result, but there should only be one answer to the
question of where α(1⊗ 1)+β(1⊗ i) is sent! The answer is that A := C⊗RC
is a tensor product over R, and as such we are only allowed to move scalars
from R across the ⊗ symbol. When we decided to take the right copy of
the R-algebra C and extend scalars to C, we have made a decision to let
the base ring C act on the left side of pure tensors. If we make a similar
construction B := C⊗R C where we think of the left copy as an R-module
and extend scalars to C from the right, then the set-theoretic identity map
A→ B is an R-module isomorphism, but not a C-linear map (however, there
is a C-algebra isomorphism, which is..). Note that the issue is not unique
to algebras, it’s an issue with modules in general: Making C ⊗R C into a
C-module via the left or right copies of C results in different modules (in the
sense that the set-theoretic identity map is not a C-linear map from C⊗R C
defined the first way to C⊗R C defined the second way).

Remark 3.54. [ Non-examinable ] One can classify all C-algebra homo-
morphisms C ⊗R C → C. Every such homomorphism is R-linear and thus
corresponds to an R-bilinear maps C × C → C. These are all of the form
(x, y) 7→ T (x)S(y) where T, S are R-linear maps C → C. Thus, each
R-linear maps C ⊗R C → C send x ⊗ y 7→ T (x)S(y) for T, S as above.
For such an R-linear map to be a C-algebra homomorphism it is neces-
sary that x ⊗ 1 7→ x, and so T = idC. So, what does it take for a map
C ⊗R C → C satisfying x ⊗ y 7→ xS(y) to be a C-algebra homomorphism?
Since (1⊗ y1)(1⊗ y2) = 1 ⊗ (y1y2), we must have S(y1y2) = S(y1)S(y2).
Similarly S(1) = 1. So S : C → C is a ring homomorphism (and also R-
linear). An R-linear map C→ C sending 1C 7→ 1C must be the identity on
R. A ring homomorphism C→ C fixing R elementwise must send i ∈ C to a
root of T 2 +1. The only such R-linear maps are the identity and conjugation
on C. So x⊗y 7→ xy and x⊗y 7→ xy are the only C-algebra homomorphisms
C ⊗R C → C. We can pack them into a single C-algebra homomorphism
C⊗R C→ C× C, x⊗ y 7→ (xy, xy). This map is surjective. Surjetivity will
always hold when you take a commutative C-algebra A, dimCA <∞, and



COMMUTATIVE ALGEBRA 41

a collection of distinct C-algebra homomorphisms, and pack them like this.
You can think about this directly. I think about it as a special case of the
Artin–Wedderburn Theorem (from the not-necessarily-commutative world).
In our case, the C-linear surjective map is between C-vector spaces of the
same dimension (i.e. dimension 2), and so it is an isomorphism. In fact, in
general, if you use all C-algebra homomorphisms A→ C, you will have an
isomorphism if and only if the only nilpotent element in A is 0 (if A has a
nonzero nilpotent element then the number of C-algebra homomorphisms
A→ C is smaller than dimCA).

4. Localization

Definition 4.1. A multiplicative subset of the ring R is a subset S ⊂ R such
that 1 ∈ S and ab ∈ S whenever a, b ∈ S.

The multiplicative closure of a subset U of R is the intersection of all
multiplicative subsets of R that contain U (equivalently, it is the set S of all
elements of the form

∏n
i=1 s1 · · · sn, n ≥ 0, which automatically includes 1 by

taking n = 0).

4.1. An overview of the basic idea. If R is an integral domain, we know
the construction of the field of fractions FracR of R. We have a canonical
ring homomorphism R→ FracR sending r 7→ r

1 . Informally, we start from
R and add inverses for all elements of the set S = R \ {0}. This set S
is multiplicative because R is an integral domain. Here we generalize this
construction: we will not assume that R is an integral domain, and we will
add inverses for the elements of an arbitrary multiplicative subset S ⊂ R.
The resulting ring will be denoted S−1R, and we will have a canonical map
R→ S−1R, r 7→ r

1 , which will not always be injective (it will be injective if
and only if S does not contain any zero divisor of R). We go even further: for
an R-module M and a multiplicative subset S of R, we form the R-module
S−1M , consisting of elements of the form m

s , m ∈M , s ∈ S. Then the ring
S−1R is a special case of S−1M , by looking at R as an R-module, but unlike
the general case of S−1M , in S−1R we also define multiplication that makes
it into a ring and not just a module. It then turns out the S−1M is not just
an R-module, but an S−1R-module (i.e. the structure ring homomorphism
R → EndS−1M of S−1M as an R-module factors through the canonical
map R → S−1R, r 7→ r

1). Finally, we will see that the ring S−1R has a
certain universal property: any ring homomorphism R → A sending each
element of S to an invertible element of A factors uniquely via the canonical
map R → S−1R. As usual with universal properties, S−1R will be shown
to be the unique ring satisfying the universal property (up to isomorphism).
One can easily define a similar universal property for an arbitrary subset
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U of R rather than the multiplicative subset S of R, i.e. is there a ring B
such that every homomorphism R → A sending each element of U to an
invertible element of A factors uniquely through some fixed map R → B?
The answer turns out to be positive: the unique answer is to take B = S−1R,
where S is the multiplicative closure of U in R. In this sense, working with
multiplicative subsets to begin with does not limit the generality. Another
way to think about this, slightly less formally: in any ring A, if a1, a2 ∈ A are
both invertible, then so is their product a1a2, and so if you “add inverses” to
a certain set U ⊂ R of elements, you have to add inverses to all elements in
the multiplicative closure S of U . Once we are done with the fundamentals
reviewed above, we will see algebraic applications of localization. In other
courses, such as Algebraic Geomtery, you will see geometric applications that
explain, in particular, what local geometric information becomes accessible
via localization.

4.2. The construction and univeral property.

Definition 4.2. Let S be a multiplicative subset of the ring R. Let M be
an R-module. Consider the set of all pairs (m, s), m ∈ M , s ∈ S. Write
(m1, s1) ∼ (m2, s2) if there is u ∈ S such that u(s2m1 − s1m2) = 0. Then ∼
is an equivalence relation (see later). We write m

s for the equivalence class
of (m, s), and let S−1M =

{
m
s | m ∈M, s ∈ S

}
. We make the set S−1M

into an abelian group by letting m1
s1

+ m2
s2

= s2m1+s1m2
s1s2

, which is well defined
(see later). We make the abelian group S−1M into an R-module by letting
rms = rm

s , which is again well defined.
Consider R as an R-module. Then the R-module S−1R becomes a ring by

letting r1
s1
· r2s2 = r1r2

s1s2
, which is well defined (see later).

The R-module S−1M is in fact an S−1R-module via the action r
s ·

m
t = rm

st ,
which is well defined (see later).

Remark 4.3. For the reader who knows the construction of the field of fractions
FracR of an integral domain R, the only surprise in the definition above is
probably the introduction of u in the definition of the equivalence class ∼.
But it is easy to see that u is necessary: our point is to make u (and every
other element of S) into an invertible element in the new ring S−1R. But,
regardless of localization, for any R-module M , invertible element x ∈ R and
m ∈M , if xm = 0, then, letting x−1 act on both sides, we have m = 0. So
u is necessary. The more surprising thing is that handling this particular
issue in the definition of ∼ is sufficient in order to make S−1R and S−1M

into a ring and a module (respectively), and to satisfy the universal property
sketched in the overview.
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From now on we shall use the term unit to refer to an invertible element of
a ring. We turn to checking that the notions in Definition 4.2 are as promised
(i.e. well defined, and give the structure of a module, ring, etc.). Let S ⊂ R
be a multiplicative subset and take an R-module M . First, we show that ∼
is an equivalence relation. It is clearly reflexive and symmetric. We show
transitivity: Assume that (m1, s1) ∼ (m2, s2) and (m2, s2) ∼ (m3, s3). Then
there u, v ∈ S such that

u(s2m1 − s1m2) = 0 = v(s3m2 − s2m3) .

Multiplying the LHS by vs3, the RHS by us1, and adding the results up, we
have:

uv(s2s3m1 − s1s3m2 + s1s3m2 − s1s2m3) ,

i.e.
uvs2(s3m1 − s1m3) ,

and so (m1, s1) ∼ (m3, s3) because uvs2 ∈ S because S is multiplicative.
What is still left to prove?
(1) Addition in S−1M is well defined and makes S−1M into an abelian

group (with 0
1 as the zero element).

(2) Multiplication of a scalar r ∈ R by m ∈M is well defined and makes
S−1M into an R-module.

(3) Multiplication of r1
s2

and r2
s2

is well defined and makes R into a ring
(with 1

1 as the multiplicative identity).
These verifications are straightforward and are left to the reader and will be
taken for granted from now on. Now:

(1) The map R→ S−1R given by r 7→ r
1 is clearly a ring homomorphism.

(2) Making S−1M into an S−1R-module: Write ρ : R→ EndS−1M

for the structure ring homomorphism of the R-module S−1M . Now,
ρ(s) =

(
x
t 7→

sx
t

)
is a unit of EndS−1M for all s ∈ S because it has

the map x
t 7→

x
st as an inverse (verify that this map is in EndS−1M).

Thus, by the universal property of S−1R (see below) ρ factors through
a unique ring homomorphism ρ : S−1R → EndS−1M (i.e. ρ(r) =

ρ
(
r
1

)
), and ρ

(
r
s

)
=
(
m
t 7→

ρ(r)(m)
st

)
, that is, r

s ·
m
t = r·m

st (again, the
universal property will give this). The fact that the ring EndS−1M

is generally not commutative will not pose a problem.
Here is the universal property of S−1R. We will write ιS−1R : R→ S−1R for
the canonical ring homomorphism ιS−1R(r) =

r
1 . It has the property that

ιS−1R(s) is a unit of S−1R for all s ∈ S.

Proposition 4.4. Let S be the multiplicative closure of a subset U of R.
Then, for every ring B (unital, but not necessarily commutative) and ring
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homomorphism f : R → B such that f(u) is a unit for all u ∈ U , there a
unique ring homomorphism h : S−1R→ B such that f = h ◦ ιS−1R (that is,
f(r) = h

(
r
1

)
for all r ∈ R). It is given by h

(
r
s

)
= (f(s))−1f(r).

Furthermore, if (A, j) is another pair of a ring A and a ring homomorphism
j : R→ A with the same universal property11 of

(
S−1R, ιS−1R

)
as above, then

we have an isomorphism φ : S−1R→ A given by φ
(
r
s

)
= (j(s))−1j(r).

Proof. Consider a ring homomorphism f : R→ B as in the statement. First,
note that since f sends the elements of U to units, it all sends the ele-
ments of the multiplicative closure S of U to units. Define a ring homo-
morphism h : S−1R → B by letting h

(
r
s

)
= (f(s))−1f(r). Then clearly

f(r) = h
(
r
1

)
. Also, for h to be a ring homomorphism we must have

1 = h(1) = h
(
1
s ·

s
1

)
= h

(
1
s

)
h
(s
1

)
︸ ︷︷ ︸
=f(s)

and so h
(
r
s

)
= h

(
1
s

)
h
(r
1

)
︸ ︷︷ ︸
=f(r)

= (f(s))−1f(r),

so there is no other way to define h. We still need to prove that h is a well
defined ring homomorphism: Assume that r1

s1
= r2

s2
. Then there is t ∈ S such

that ts2r1 = ts1r2. Then f(t)f(s2)f(r1) = f(t)f(s1)f(r2), and we can divide
both sides by f(t)f(s1)f(s2) because f sends the elements of S to units. So
h is well defined. Checking that h is a ring homomorphism is now trivial.

Now to the uniqueness of
(
S−1R, ιS−1R

)
as a pair satisfying a universal

property. Assume that (A, j) as in the statement also satisfies the univer-
sal property. Challenging S−1R with j we obtain a ring homomorphism
φ : S−1R → A such that j = φ ◦ ιS−1R. Challenging A with ιS−1R we ob-
tain a ring homomorphism ψ : A → S−1R such that ιS−1R = ψ ◦ j. Thus
ψ◦φ◦ ιS−1R = ιS−1R. That is, ψ◦φ is the solution for challenging S−1R with
ιS−1R. But idS−1R is a solution to the same challenge, and so ψ ◦φ = idS−1R.
Similarly φ ◦ ψ = idA, and so φ and ψ are isomorphisms. As for the formula
for the isomorphism φ : S−1R→ A: we have j = φ◦ ιS−1R, which means that
φ
(
r
1

)
= j(r). As in the first paragraph, this forces φ

(
r
s

)
= (j(s))−1j(r). □

We can express the universal property of the ring S−1R as a natural
bijection: For every ring B,

HomRings

(
S−1R,B

) ∼= {φ ∈ HomRings(R,B) | φ(U) ⊂ B×
}

where B× is the group of units (i.e. invertible elements) of B. The bijection
sends f : S−1R→ B to the map r 7→ f

(
r
1

)
.

Some properties of S−1R and the map ι = ιS−1R : R → S−1R (S a
multiplicative subset of R):

11That is, j(u) is a unit of A for all u ∈ U , and every ring homomorphism f : R → B

such that f(u) is a unit for all u ∈ U factors uniquely via j.
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(1) An element r
s ∈ S

−1R is 0 ⇔ r
s = 0

1 ⇔ There is u ∈ S such that
ur = 0.

(2) So S−1R = 0 ⇔ 1
0 = 0

1 in S−1R ⇔ 0 ∈ S, and
(3) ker ι = {r ∈ R | ∃u ∈ S ur = 0}.
(4) In particular, ker ι = 0 ⇔ S contains no zero divisors.
(5) ι is always an epimorphism, but usually not surjective.

Recall that a morphism f : A → B (in any category) is an epimor-
phism if g ◦ f = h ◦ f implies g = h. For example, the embedding
Z ↪→ Q is an epimorphism because two ring homomorphisms from Q
that agree on Z must agree on all of Q. But clearly Z ↪→ Q is not
surjective. Similarly, if two ring homomorphisms from S−1R agree
on im ιS−1R then they must agree (check!).
Nevertheless, every surjective ring homomorphism is an epimorphism.
Note that in the following categories, the epimorphisms are pre-
cisely the surjective morphisms: Sets, Groups, R-modules, topological
spaces.

The following two examples of localizations are very important.

Example 4.5.

(1) Let f ∈ R. Then S = {fn | n ≥ 0} is a multiplicative subset of
R. The ring S−1R is denoted Rf . It is “R with f inverted” (and
necessarily all powers of f are inverted too).
(a) Example: R = Z, f = 2. Then Rf =

{
a
2n | a ∈ Z, n ≥ 0

}
. This

is the ring of dyadic rational numbers. It is isomorphic to the
ring Z

[
1
2

]
(i.e., the subring of Q generated by Z and 1

2 , i.e. the
image of the unique Z-algebra homomorphism Z[T ] 7→ Q sending
T 7→ 1

2).
Notational caveat: In some undergraduate texts, Zn denotes
a ring isomorphic to Z/nZ. I will only write Z/nZ for this finite
ring. But there’s another problem: for a prime number p, Zp

commonly denotes the ring of p-adic integers, which is not the
ring {pn | n ≥ 0}−1Z discussed above. For this reason, when
localizing Z using S =

{
nℓ | ℓ ≥ 0

}
, I will write Z

[
1
n

]
instead of

using the Rf notation.
(b) Rf is the zero ring if and only if 0 ∈ {fn | n ≥ 0} if and only if

f is a nilpotent element of R (we will use it later to provet that
a certain ring element is nilpotent!).

(2) Let p be a prime ideal of R. Then S = R \p is a multiplicative set (in
fact, that’s the definition of p being prime). We let Rp := (R \ p)−1R.
The ring Rp is called R localized at p.
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(a) Example: Let p be a prime number. Then p = (p) is a prime
ideal of Z, and we may localize Z(p) =

{
m
n | m,n ∈ Z p ∤ n

}
.

Proposition 4.6. Let M be an R-module. Then S−1R⊗R M
∼−→ S−1M as

S−1R-modules via an isomorphism sending r
s ⊗m 7→

rm
s .

Proof. Define an R-bilinear map S−1R ×M → S−1M sending
(
r
s ,m

)
7→

rm
s . It gives rise to an R-linear map φ : S−1R ⊗M → S−1M such that
φ
(
r
s ⊗m

)
= rm

s . It is clear that φ is surjective, and easy to check that it is
S−1R-linear (and not just R-linear). We now show that φ is injective. First,
we show that every tensor t =

∑ℓ
i=1

ri
si
⊗mi in S−1R ⊗R M is pure. Let

s = s1 · · · sℓ and ti =
∏

j∈{1,...,ℓ}\{i} sj . Then

t =
ℓ∑

i=1

(
ti
s

)
⊗ rimi

=
ℓ∑

i=1

1

s
⊗ tirimi

=
1

s
⊗

ℓ∑
i=1

tirimi .

Thus, it suffices to check injectivity on pure tensors of the form 1
s ⊗ m.

If φ
(
1
s ⊗m

)
= 0

1 then m
s = 0

1 , and thus um = 0 for some u ∈ S. Thus
1
s ⊗m = u

us ⊗m = 1
us ⊗ um = 0. □

Let S be a multiplicative subset of R. We have defined S−1(·) of an
R-module M . We have seen that S−1R ⊗R M ∼= S−1M as S−1R-modules.
But S−1R ⊗ (·) is a functor, acting not only on R-modules, but also on
R-linear maps. So we can also make S−1(·) into a functor, by defining S−1f
in the way that makes the following diagram commute for every R-linear
map f : N → N ′:

S−1R⊗R N
idS−1R⊗f //

r
s
⊗n7→ rn

s
��

S−1R⊗R N
′

r
s
⊗n′ 7→ rn′

s��
S−1N

S−1f // S−1N ′

There is just one way to define S−1f that makes this diagram commute (start
from S−1N , go up-right-down). That is n

s 7→
1
s ⊗ n 7→

1
s ⊗ f(n) 7→

f(n)
s′ .

That is
(
S−1f

)(
n
s

)
= f(n)

s . This is an S−1R-linear map because we defined
it as the composition of three S−1R-linear maps. Since S−1 ⊗R (f ◦ g) =((
S−1R

)
⊗ f

)
◦
((
S−1R

)
⊗ g
)
, we have S−1(f ◦ g) =

(
S−1f

)
◦
(
S−1g

)
.
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Remark 4.7. [ non-examinable ] In category-theoretic terminology, we have
shown that the functors S−1R⊗R (·) and S−1(·) (both from the category of
R-modules to the category of S−1R-modules) are naturally isomorphic. A
natural isomorphism between functors is a collection of isomorphisms between
objects, that satisfies a certain property as a collection. In our case, the
natural isomorphism is (εM )M (M runs over all R-modules), where each
εM : S−1R⊗RM → S−1M is an S−1R-linear isomorphism, εM

(
r
s ⊗m

)
= rm

s ,
such that for every R-linear map f : N → N ′ the following diagram commutes:

S−1R⊗R N

εN
��

S−1R⊗f // S−1R⊗R N
′

εN′
��

S−1N
S−1f // S−1N ′

The commutativity of this diagram is clear because we defined S−1f in order
for this diagram to commute, but this was a good opportunity to mention the
notion of a natural isomorphism. A natural isomorphism is a special case of
a natural transformation (where the εM are only required to be morphisms,
not necessarily isomorphisms).

Remark 4.8. Take an R-algebra A. By the proposition above, we have an
S−1R-module isomorphism S−1R⊗R A→ S−1A, r

s ⊗ a 7→
ra
s . It is easy to

check that this map sends 1
1 ⊗ 1 7→ 1

1 and respects multiplication, and so
it is an S−1R-algebra isomorphism. We also know that S−1R ⊗R (·) takes
R-algebra homomorphisms to S−1R-algebra homomorphisms. Since S−1(·)
of a morphism was defined via S−1R⊗R (·), we deduce that S−1(·) also takes
an R-algebra homomorphism to an S−1R-algebra homomorphism.

We’ve seen that restriction of scalars followed by extension of scalars does
not, in general, result in the original module. However, the following lemma
says that in the case of S−1R ⊗R (·), applied to an S−1R-module M , the
result is isomorphic to M as an S−1R-module.

Lemma 4.9. Let S ⊂ R be a multiplicative subset. Let M be an S−1R-
module. Write S−1M for the module resulting from restricting scalars in
M from S−1R to R, and then localizing with S. Then M

∼−→ S−1M as
S−1R-modules via a map sending m 7→ m

1 (and 1
sm ←[ ms ). Equivalently,

M
∼−→ S−1R⊗R M as S−1R-modules via a map sending m 7→ 1⊗m (and

r
sm←[ rs ⊗m).

Proof. The map m 7→ m
1 : M → S−1M is S−1R-linear. For m

s ∈ S
−1M , we

have 1
sm 7→

1
s ·m = m

s , proving surjectivity. To prove injectivity: if m
1 = 0

1 in



COMMUTATIVE ALGEBRA 48

S−1M then um = 0 in M for some u ∈ S. But M is an S−1R-module, and

so we deduce that
1

u
um︸ ︷︷ ︸
=m

= 0. □

We have seen that S−1R is characterized by a universal property. The
same is true for S−1M . We have an R-linear map ιS−1M : M → S−1M

given by ιS−1M (m) = m
1 . The universal property can be expressed succintly

as HomR(M,L) ∼= HomS−1R

(
S−1M,L

)
for every S−1R-module L (with a

natural isomorphism between the sets, see below):

Proposition 4.10. Let S be a multiplicative subset of R, and let M be an
R-module. Consider an R-linear map f : M → L, where L is an S−1R-
module. Then there is a unique S−1R-linear map h : S−1M → L such that
f = h ◦ ιS−1M .

Furthermore if (T, j) is a pair of S−1R-module T and R-linear map
j : M → T satisfyng the same universal property, then S−1M

∼−→ T by
the S−1R-module isomorphism sending m

s 7→
1
s j(m).

Proof. Since the functors S−1(·) and S−1R⊗R (·) are naturally isomorphic,
we can prove the claim for the pair

(
S−1R⊗R M, ι

)
, for the R-linear map,

ι : M → S−1R ⊗R M , ι(m) = 1 ⊗ m instead of the pair
(
S−1M, ιS−1M

)
.

We have an R-linear map f : M → L, L an S−1R-module. Define h =

idS−1R⊗f : S−1R⊗R M → S−1R⊗R L︸ ︷︷ ︸
∼=L

(where Lemma 4.9 was used). As a

map into L, h is given by h
(
r
s ⊗m

)
= r

sf(m). Then h

 ι(m)︸︷︷︸
=1⊗m

 = f(m) as

desired. The uniqueness of the S−1R-linear map h follows from the fact the
tensors of the form 1⊗m generate S−1R⊗R M as an S−1R-module.

The proof of the uniqueness of
(
S−1R⊗R M, ι

)
is left to the reader. □

Recall that a functor that preserves all exact sequences of length 3 must
preserve all exact sequences.

Proposition 4.11 (Exactness of S−1(·)). If A f−→ B
g−→ C is an exact

sequence of R-modules then so is S−1A S−1f−→ S−1B
S−1g−→ S−1C. Equivalently,

S−1R⊗R(·) is an exact functor from the category of R-modules to the category
of S−1R-modules. Equivalently, S−1R is a flat R-module12.

12It is clear that S−1R is a flat S−1R-module since every ring is flat as a module over
itself. Here we have a stronger statement. For example, Q is a flat Z-module.
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Proof. Clearly imS−1f ⊂ kerS−1g because
(
S−1g

)
◦
(
S−1f

)
= S−1

f ◦ g︸︷︷︸
=0

.

Now, take b
s ∈ kerS−1g. Then g(b)

s = 0
1 . That is, ug(b)︸ ︷︷ ︸

=g(ub)

= 0 for some

u ∈ S, i.e. ub ∈ ker g = im f . Take a ∈ A such that f(a) = ub. Then
b
s = f(a)

us =
(
S−1f

)(
a
us

)
∈ imS−1f . □

Remark 4.12. Let S be a multiplicative subset of R. Let M be an R-module
and N an R-submodule. Consider the inclusion map ι : N ↪→M , and apply
S−1. The exactness of S−1(·) implies that S−1N → S−1M , n

s 7→
n
s , is

injective. It is convenient that the notation n
s for an element of S−1N is the

same as the notation for an element of S−1M whose numerator happens to
be in N . So we shall treat S−1N as an S−1R-submodule of M . Equivalently,
the flatness of S−1R as an R-module implies that idS−1R⊗N → idS−1R⊗M
is injective, and so we can think of elements of S−1R ⊗R N (expressed as
sums of pure tensors) as elements of S−1R ⊗R M . We’ve seen in Example
3.8, in the general case of a tensor product of submodules, that the situtation
is not as nice in the absence of flatness.

Remark 4.13. For the next proposition, recall that for an R-module M and
submodules N1 and N2, we write N1+N2 for the submodule of M consisting
of all elements of the form n1 + n2, n1 ∈ N1 and n2 ∈ N2. We have a
surjective R-linear map φ : N1 ⊕N2 → N1 +N2 sending (n1, n2) 7→ n1 + n2
whose kernel is {(n,−n) | n ∈ N1 ∩N2}. Thus, we say that the sum N1+N2

is direct if N1 ∩N2 = {0} because then φ is an isomorphism. In this case, we
refer to N1 +N2 as an internal direct sum (as opposed to the external direct
sum N1 ⊕N2). More generally, a sum N1 + · · ·+Nℓ of submodules of M is
direct if the natural surjective R-linear map N1⊕ · · ·⊕Nℓ → N1+ · · ·+Nℓ is
injective (equivalently, (N1 + · · ·+Ni) ∩Ni+1 = {0} for all 1 ≤ i < ℓ). The
sums in the following proposition are not assumed to be direct.

Proposition 4.14. Let N,P be submodules of an R-module M . Then (see
Remark 4.12 to recall why we can write =):

(1) S−1(N + P ) = S−1N + S−1P .
(2) S−1(N ∩ P ) = S−1N ∩ S−1P .
(3) S−1M/S−1N

∼−→ S−1(M/N) as S−1R-modules by a map sending
m
s + S−1N 7→ m+N

s (and m
s + S−1N ←[ m+N

s ).

Proof. (1) The LHS consists of all elements of S−1M of the form n+p
s , n ∈ N ,

p ∈ P , s ∈ S, while the RHS consists of all elements of the form n
s1

+ p
s2

.
These sets are equal.
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(2) If x ∈ S−1N ∩ S−1P then x = n
s1

= p
s2

, n ∈ N , p ∈ P , s1, s2 ∈ S.
Hence, u(s2n− s1p) = 0 for some u ∈ S. So w := us2n︸ ︷︷ ︸

∈N

= us1p︸︷︷︸
∈P

is in N ∩ P ,

and thus x = n
s1

= w
us1s2

∈ S−1(N ∩ P ). The reverse inclusion is clear.
(3) Apply the exact functor S−1 to the short exact sequence

0 −→ N
ι−→M

π−→M/N −→ 0

to obtain the exact sequence

0 −→ S−1N
S−1ι−→ S−1M

S−1π−→ S−1(M/N) −→ 0 .

Now
(
S−1ι

)(
S−1N

)
is exactly S−1N , viewed as a submodule of S−1M .

Furthermore, the map S−1π sends m
s to m+N

s . That is, the kernel of the
map S−1M → S−1(M/N), m

s 7→
m+N

s , is exactly S−1N , and the result
follows. □

Proposition 4.15. Let S be a multiplicative subset of a ring R, and let
M,N be R-modules. Then S−1M ⊗S−1R S

−1N
∼−→ S−1(M ⊗R N) as S−1R-

modules by a map sending m
s1
⊗ n

s2
7→ m⊗n

s1s2
.

In particular, if p is a prime ideal of R then Mp ⊗Rp Np
∼= (M ⊗R N)p.

Proof. (
S−1R⊗R M

)
⊗S−1R

(
S−1R⊗N

) ∼= S−1R⊗R (M ⊗R N)

as S−1R-modules by Corollary 3.30, sending
(
r1
s1
⊗m

)
⊗
(
r2
s2
⊗ n

)
7→ r1r2

s1s2
⊗

(m⊗ n). Using the natural isomorphism S−1R⊗RM → S−1M , r
s⊗m 7→

rm
s ,

the result follows. □

4.3. Extension and contraction under the localization map R→ S−1R.
For a ring homomorphism f : A→ B, recall that:

(1) We have a contraction map b 7→ f−1(b)︸ ︷︷ ︸
=:bc

(b an ideal of B), and bc is

an ideal of A.
(2) We have an extension map a 7→ (f(a))︸ ︷︷ ︸

=:ae

(a an ideal of A), i.e. ae is the

ideal of B generated by the image of a under f .
(3) For every prime ideal b of B, the ideal bc is also prime13.
(4) A contracted ideal of A is an ideal of the form bc for an ideal b of B.

An extended ideal of B is an ideal of the form ae, a an ideal of A.
(5) From Example Sheet 1:

13Indeed, the kernel of the composite map A
f−→ B −→ B/b is bc, and so A/bc embeds

in the integral domain B/b, and thus A/bc is an integral domain.
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(a) An ideal a of A is contracted ⇔ a = aec (while a ⊂ aec holds for
every a).

(b) An ideal b of B is extended ⇔ b = bce (while b ⊃ bce holds for
every b).

(c) We have a bijective correspondence

{ contracted ideals of A} ↔ { extended ideals of B }

given by a 7→ ae and bc ←[ b.
Let S be a multiplicative subset of R. Recall the localization map R→ S−1R,
r 7→ r

1 . Extensions and contractions will be taken below with respect to this
map (denoted ()e and ()c, respectively). We have explicit formulas for the
extension and contraction under the localiztion map:

(1) Extension: For an ideal a of R,

ae = S−1a︸ ︷︷ ︸
={a

s
∈S−1R|a∈a, s∈S}

.

The RHS is formed by thinking of a as an R-submodule of R, and
applying S−1(·). The equality follows since both ae and S−1a are
equal to the smallest ideal of S−1R containing

{
a
1 | a ∈ a

}
(check!).

(a) Thus aec =
⋃

s∈S (a : s)︸ ︷︷ ︸
={r∈R|rs∈a}

. Indeed, if r is in the RHS then

rs = a (in R) for some s ∈ S, a ∈ a, and thus rs
1 = a

1 (in S−1R),
that is, r

1 =
a

s︸︷︷︸
∈ae

, i.e. r ∈ aec. In the other direction, if r is in

the LHS then r
1 = a

s (in S−1R) for some a ∈ a, s ∈ S, and so
u(rs− a) = 0 for some u ∈ S, and thus rus = ua ∈ a, and hence

r ∈

a : us︸︷︷︸
∈S

.

(2) Contraction: For an ideal b of S−1R:

bc =
{
r ∈ R | r

1
∈ b
}

(this is just the definition).
(a) Thus bce = b: ⊂ holds for every ring homomorphism (not just

R→ S−1R). Now, take r
s ∈ b. Then r

1 ∈ b. Thus r ∈ bc. Hence
r
1 ∈ bce. So r

s ∈ bce.
Below we will write specR for the set of prime ideals of a ring R.

Proposition 4.16. Consider the localization map R→ S−1R, r 7→ r
1 (which

is a ring homomorphism). Then:
(1) Every ideal of S−1R is extended.
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(2) An ideal a of R is contracted if and only if the image S of S in R/a

contains no zero divisors.
(3) ae = S−1R if and only if a ∩ S ̸= ∅.
(4) We have a bijection

{p ∈ specR | p ∩ S = ∅} ↔ specS−1R

given by p 7→ pe and qc ←[ q.

Proof. 1) Follows since b = bce.
2) a is contracted ⇔ aec︸︷︷︸

=
⋃

s∈S(a:s)

⊂ a ⇔ ( Sr ∩ a ̸= ∅︸ ︷︷ ︸
⇔(0+a∈S·(r+a))

⇒ r ∈ a︸ ︷︷ ︸
⇔r+a=0+a

) ⇔

the image S of S in R/a has no zero divisors.
3) If a ∩ S ̸= ∅, take x ∈ a ∩ S. Then ae ∋ x

x = 1.
In the other direction, if 1 ∈ ae, then 1

1 = a
s for some a ∈ a, s ∈ S, and thus

u(a− s) = 0 for some u ∈ S, and so us︸︷︷︸
∈S

= ua︸︷︷︸
∈a

.

4) In general (for every ring homomorphism), the contraction of a prime
ideal is a prime ideal. By (2), a prime ideal p of R is contracted ⇔ the image
of S in R/p contains no zero divisors ⇔ p ∩ S = ∅ (since R/p is an integral
domain). Thus, {p ∈ specR | p ∩ S = ∅} is the set of contracted prime ideals
of R, and the contraction map qc ←[ q : specR← specS−1R is in fact a map:

{p ∈ specR | p ∩ S = ∅} ← specS−1R .

For q ∈ specS−1R, we have qce = q since every ideal of S−1R is extended.
For p ∈ {p ∈ specR | p ∩ S = ∅}, we have pec = p because p is contracted as
explained above. It remains to show that pe belongs to specS−1R (when
p ∩ S = ∅)14. By (3) we know that pe is a proper ideal of S−1R. Now, take
x1
s1
, x2
s2
∈ S−1R, x1, x2 ∈ R, s1, s2 ∈ S, such that x1x2

s1s2
∈ pe. Then x1x2

s1s2
= p

t

for some p ∈ p and t ∈ S, and so ut︸︷︷︸
/∈p

x1x2 = us1s2p︸ ︷︷ ︸
∈p

for some u ∈ S. Thus

x1x2 ∈ p, and so x1 ∈ p or x2 ∈ p, and hence x1
s1
∈ pe or x2

s2
∈ pe. □

14In the lecture, I proved this in a different way. Many thanks to the student who
suggested that it’s shorter to argue directly. For completeness, here’s the proof from
the lecture: The strategy is to show that

(
S−1R

)
/pe is an integral domain by showing

that it embeds in Frac(R/p). The composite map R → R/p → Frac(R/p) sends every
element of S ⊂ R to an invertible element of Frac(R/p), and thus gives rise to a ring
homomorphism φ : S−1R → Frac(R/p) given by r

s
7→ r+p

s+p
. We see that the image of φ

is contained in the subring S
−1

(R/p) of Frac(R/p), where S is the image of S in R/p.
Take r

s
∈ S−1R. Then r

s
∈ kerφ ⇔ r+p

s+p
= 0

1
in S

−1
(R/p) ⇔ there is u + p ∈ S, u ∈ S,

such that (u+ p)(r + p) = 0 ⇔ ur ∈ p for some u ∈ S ⇔ r ∈ p (since p is prime and
u /∈ p). That is, kerφ =

{
r
s
| r ∈ p, s ∈ S

}
= pe, and so φ induces a a ring embedding(

S−1R
)
/pe ↪→ Frac(R/p).
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To show an application, we introduce some important definitions.

Definition 4.17. The radical of an ideal I ofR is
√
I = {r ∈ R | ∃n ≥ 1 rn ∈ I}.

Any radical (and in particular, the nilradical nilR :=
√
(0), consisting

of all nilpotent elements of R) is an ideal of R: If xn ∈ I and yℓ ∈ I then
(x+ y)n+ℓ ∈ I (since each term in the expansion of (x+ y)n+ℓ is xiyj where
i ≥ n or j ≥ ℓ). Thus

√
I is closed under addition, and the rest of the proof

is trivial. Note that I ⊂
√
I. Note also that if J ⊂ I are ideals of R then√

I/J =
√
I/J (check!).

Proposition 4.18.
√
I =

⋂
I⊂p∈specR p.

Proof. If x ∈
√
I then xn ∈ I for some n ≥ 0, and so xn ∈ p for every

p ∈ specR such that I ⊂ p, and thus x ∈ p since p is prime.
Now, assume that x ∈ R, x /∈

√
I. Then I ̸= R, and so R/I ̸= 0. Write

x for the image of x in R/I, and consider the localized ring (R/I)x︸ ︷︷ ︸
{xn|n≥0}−1(R/I)

.

This ring is nonzero since x is not nilpotent (as x /∈
√
I), and so (R/I)x has

a prime ideal (because every nonzero ring has a maximal ideal). This prime
ideal corresponds to a prime ideal of R/I, disjoint from {xn | n ≥ 0}. Taking
the preimage in R, we obtain a prime ideal p of R, containing I and disjoint
from {xn | n ≥ 0}, and in particular x /∈ p. □

4.4. Local properties.

Definition 4.19. A ring R is local if R has exactly one maximal ideal m.

When introducing a local ring, we often write (R,m) to give a name m to
the unique maximal ideal of R.

Example 4.20. Let p ∈ specR, and consider Rp = (R \ p)−1R. Write pRp

for the extension pe of p to Rp. The prime ideals of Rp are given (bijectively)
by extensions of prime ideals of R contained in p. In particular, all prime
ideals of Rp are contained in pAp. Thus, (Rp, pRp) is a local ring. For
example, Z(2) =

{
a
b | a, b ∈ Z, 2 ∤ b

}
is a local ring whose unique maximal

ideal is (2)Z(2) =
{
2a
b | a, b ∈ Z, 2 ∤ b

}
.

For every R-module M , Mp is a module over the local ring Rp. The
purpose of this section is to reduce problems concerning general modules to
problems concerning modules over local rings. Later, we will develop tools
to deal with modules over local rings (such as Nakayama’s Lemma, which is
useful for finitely generated modules over local rings).

Remark 4.21. It is instructive to contrast Rp with R/p. The prime ideals of
Rp correspond to the prime ideals R that are contained in p. The prime ideals
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of R/p correspond to the prime ideals of R that contain p. If q ⊂ p are prime
ideals of R, then the prime ideals of Rp/qRp correspond to the prime ideals
of R between q and p. The same can be said about15 (R/q)p. In fact, we
have a ring isomorphism Rp/qRp → (R/q)p,

r
s + qRp 7→ r+q

s+q , since localiztion
commutes with quotients. If we take p = q we obtain the ring κ(p) := Rp/pRp,
which is a field since pRp is a maximal ideal of Rp. We call κ(p) the residue
field of R at p. Equivalently, we may set κ(p) = (R/p)p = Frac(R/p).

Proposition 4.22 (Being zero is a local property). For an R-module M , the
following are equivalent:

(1) M = 0.
(2) Mp = 0 for each prime ideal p of R.
(3) Mm = 0 for each maximal ideal m of R.

Proof. (1)⇒(2)⇒(3) is clear. Assume (3). Take m ∈ M . Consider the
anni hilator ideal AnnR(m) = {r ∈ R | rm = 0}. It suffices to show that
AnnR(M) = R because then 1 ∈ AnnR(M), i.e. 1 ·m = 0, and so M = 0. So
it suffices to prove that AnnR(M) is not contained in any m ∈ mspecR. Fix
m ∈ mspecR, and consider Mm = 0. There, m

1 = 0
1 and so um = 0 for some

u ∈ R \m, i.e. u ∈ AnnR(m) \m and so AnnR(m) ⊈ m. □

Remark 4.23. We shall require the following two observations regarding
localization: Let S ⊂ R be a multiplicative set, and f : M → N an R-linear
map. Consider the exact sequence 0 −→ ker f −→M

f−→ im f −→ 0. Since

S−1(·) is exact, 0 −→ S−1(ker f) −→ S−1M
S−1f−→ S−1(im f) −→ 0 is exact,

and so:
(1) S−1(ker f) = ker

(
S−1f

)
, and

(2) S−1(im f) = im
(
S−1f

)
.

Proposition 4.24 (Exactness is a local property). For a sequence A f−→
B

g−→ C of R-linear maps between R-modules, the following are equivalent:

(1) A f−→ B
g−→ C is exact.

(2) Ap
fp−→ Bp

gp−→ Cp is exact for each prime ideal p of R.

(3) Am
fm−→ Bm

gm−→ Cm is exact for each maximal ideal m of R.

Proof. (1) implies (2) since localization is an exact functor (Proposition 4.11),
and clearly (2) implies (3).

15To be formal, we should write (R/q)p/q for the localization of the ring R/q at the
prime ideal p/q, but we may also regard R/q as an R-module, localize to p to obtain the
Rp-module (R/q)p, and define the ring structure on (R/q)p in the natural way - the result
is isomorphic to (R/q)p/q
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Assume (3). Then [im(g ◦ f)]m = im((g ◦ f)m) = im(gm ◦ fm) = 0 for every
m ∈ mspecR. Thus im(g ◦ f) = 0 by Proposition 4.22, i.e. g ◦ f = 0, namely
im f ⊂ ker g. Now (ker g/ im f)m

∼= (ker g)m/(im f)m = (ker gm)/(im fm) = 0

for every m ∈ mspecR, and thus ker g/ im f = 0 by Proposition 4.22, i.e.
im f = ker g. □

We have the following immediate corollary:

Proposition 4.25 (Injectivity and surjectivity are local properties). For an
R-linear map f : M → N , the following conditions are equivalent:

(1) f : M → N is injective.
(2) fp : Mp → Np is injective for every p ∈ specR.
(3) fm : Mm → Nm is injective for every m ∈ mspecR.

and similary for “surjective” instead of “injective”.

Proposition 4.26 (Flatness is a local property). Let M be an R-module.
Then TFAE:

(1) M is a flat R-module.
(2) Mp is a flat Rp-module for all p ∈ specR.
(3) Mm is a flat Rm-module for all m ∈ mspecR.

Proof. (1)⇒(2): We know that Mp
∼= Rp ⊗R M as Rp-modules, and we know

that extension of scalars preserves flatness (Proposition 3.43).
(2)⇒(3): Every maximal ideal is prime.
(3)⇒(1): Take an injective R-linear map f : N → P . Take m ∈ mspecR.

Then fm : Nm → Pm is injective since injectivity is a local property. Thus
fm ⊗ idMm : Nm ⊗Rm Mm → Pm ⊗Rm Mm is injective by the assumption that
Mm is flat. So (N ⊗R M)m → (P ⊗R M)m is injective16. Since this is true
for every m ∈ mspecR, and since injectivity is a local property, we deduce
that N ⊗R M → P ⊗R M is injective. □

Remark 4.27. One may ask: Is it always enough to verify local properties on
maximal (rather than prime) ideals? The answer is yes for every reasonable
property, where a property P of modules is reasonable17 if the following
always holds: (I) For every a ring R, if M and N are isomorphic R-modules,
then M has P if and only if N has P, and (II) For every pair of isomorphic
rings R′ ∼−→ R and R-module M , if M has P as an R-module then M has
P as an R′-module.

If you want to, prove that for a reasonable module property P and an
R-module M , if Mm has P for all m ∈ mspecR then M has P. You can

16by the isomorphism S−1R ⊗R (N ⊗R M) ∼=
(
S−1R⊗R N

)
⊗S−1R

(
S−1R⊗R M

)
,

S = R \m, and similarly for P ⊗R M
17I haven’t seen this terminology used outside this remark.
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also define what it means for a property of linear maps to be reasonable
(basically the same: say that R1-linear maps f : M1 → N1 and g : M2 → N2

are isomorphic if the sequences M1
f−→ N1 and M2

g−→ N2 are isomorphic,
and imitate reasonability for module properties).

Remark 4.28. A property that passes from M to Mp for all p ∈ specR is
called localizable. A property that holds for M whenever it holds for Mp for
all p ∈ specR is called local-to-global. So, a property is local if and only if it
is both localizable and local-to-global.

Here’s a famous example that illustrates the use of local properties. It will
be stated and proved in the next example class. In a future example sheet,
you will use this result to find an interesting example.

Proposition 4.29. [ Covered in Example Class 2 ] Let R be a ring such
that:

(1) Rm is a noetherian ring for all m ∈ mspecR.
(2) |{m ∈ mspecR | x ∈ m}| <∞ for every 0 ̸= x ∈ R.

Then R is noetherian18.

Proof. Take an ideal 0 ̸= a of R. We want to show that a is finitely generated.
It suffices to find a finitely generated ideal b ⊂ a of R such that aRm︸︷︷︸

=am

= bRm︸︷︷︸
bm

for all m ∈ mspecR. Indeed, if that’s the case then consider the inclusion
map ι : b ↪→ a (as an R-linear map between R-modules). We have that
ιm : bm → am is an equality (in particular, surjective) for all m ∈ mspecR.
Thus ι is surjective (as surjectivity is a local property), and so a = b, and
thus a is finitely generated.
Fix 0 ̸= x ∈ a. We partition mspecR as a union of 3 subsets:

M1 = {m ∈ mspecR | x /∈ m}

M2 = {m ∈ mspecR | x ∈ m a ⊈ m}
M3 = {m ∈ mspecR | a ⊂ m}

For m ∈M1, we have (x) ⊈ m and a ⊈ m, and so (x)Rm = Rm = aRm.
For m ∈ M2, fix x(m) ∈ a \ m. Then

(
x(m)

)
⊈ m and a ⊈ m, and so(

x(m)
)
Rm = Rm = aRm.

For m ∈M3, the ideal aRm is finitely generated (since Rm is noetherian) by
some a1

s1
, . . . , aℓsℓ , ai ∈ a, si ∈ R \m. Then aRm is also generated by a1

1 , . . . ,
aℓ
1 .

Let a(m) = (a1, . . . , aℓ)︸ ︷︷ ︸
⊂a

. Then a(m)Rm = aRm.

18There are non-noetherian rings A such that Am is noetherian for all m ∈ mspecA.
That is, the second condition cannot be dropped.
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Let b = (x)︸︷︷︸
⊂a

+
∑

m∈M2

(
x(m)

)
︸ ︷︷ ︸
⊂a

+
∑

m∈M3
a(m)︸︷︷︸
⊂a

. Then bRm = aRm for all

m ∈ mspecR. By our hypothesis, M2 and M3 are finite sets (their union is
the set of maximal ideals of R that contain x). Thus b is the finite sum of
finitely generated ideals, and so b is finitely generated.

□

Example 4.30 (Freeness is not a local property). An R-module M is
locally free if Mp is a free Rp-module for all p ∈ specR. Take R = C × C.

Then19, specR =

C× {0}︸ ︷︷ ︸
=:p1

, {0} × C︸ ︷︷ ︸
=:p2

. What is Rp1? It is S−1(C× C) for

S = C× (C \ {0}). The ring homomorphism C×C→ C given by (x, y) 7→ y

maps all elements of S to units, and thus we have a ring homorphism
φ : Rp1 → C, φ

(
(x,y)
(a,b)

)
= y

b . Clearly φ is surjective. Its kernel consists of

all elements of the form (x,0)
(a,b) . But elements of the latter form are equal to

0
1 since (0, 1)︸ ︷︷ ︸

∈S

·(x, 0) = 0. Thus φ is an isomorphism, and Rp1
∼= C as rings.

Similarly, Rp2
∼= C. That is, R is locally a field (in fact, locally C). Thus,

every R-module is locally a vector space (in particular, locally free). If we
can find one R-module M that is not free, then M will be locally free but
not free.

Consider M = C×{0}. Then M is an ideal of R, and hence an R-module.
But M is not free: For all (x, 0) ∈M we have (0, 1) · (x, 0) = 0, and so the
empty set ∅ is the only R-linearly independent subset of M , but it clearly
does not span M .

Remark 4.31. [ non-examinable ] It is more interesting to see an example
of an integral domain R and a non-free locally free R-module M : The ideal
M =

(
2, 1 +

√
−5
)

of the integral domain R = Z
[√
−5
]

is projective (since
it is a direct summand of R⊕R), and thus Mp is a projective Rp-module for
each p ∈ specR. But projective modules over local rings are free, and thus
M is locally free. However, M is not free because it is an ideal of R which is
not principal (we’ve seen that if x ∈ A is not a zero divisor, A a ring, then
a 7→ ax : A→ (x) is an R-linear isomorphism, and thus (x) is free of rank 1;
it is clear that the ideal (0) of A is free of rank 0; it is a fact that these are
the only examples of ideals of A that are free - can you prove this?).

19In general, the ideals in a finite product
∏n

i=1 Ri of rings are exactly the subsets∏n
i=1 Ii, where Ii is an ideal of Ri. The prime ideals of

∏n
i=1 Ri are exactly

∏n
i=1 Ii as

above, where Ii0 is prime for one i0, and Ii = Ri for all i ̸= i0. You should prove this if
you haven’t seen this in a more basic course.



COMMUTATIVE ALGEBRA 58

We have discussed local properties of modules. What about rings?

Example 4.32. A ring R is reduced if 0 is the only nilpotent element of R
(i.e.

√
(0) = (0) in R). You will show in the example sheet that if R is a ring

such that Rp is reduced for all p ∈ specR then R is reduced. However, being
an integral domain is not a local property of rings.

4.5. The localiztion of a ring as a quotient. Let S be the multiplicative
closure of a subset U of R. We constructed S−1R as a set of equivalence
classes. Here we give another construction satisfying the same universal
property (thus the new construction is necessarily isomorphic to S−1R).

Consider the R-algebra R
[
{Tu}u∈U

]
. This is a polynomial R-algebra with

one variable Tu for each element of U . Now consider the quotient

RU = R
[
{Tu}u∈U

]
/
(
{uTu − 1}u∈U

)︸ ︷︷ ︸
=:IU

.

This is the quotient of our R-algera by the ideal IU generated by the elements
of the form uTu − 1, u ∈ U . The image u and Tu of u and Tu in RU satisfy
u · Tu = 1. In this sense, RU is obtained from R by “adding inverses” to the
elements of U . We will see that RU

∼= S−1R as rings.
We have a ring homomorphism ι : R → RU sending r 7→ r + IU . Take a

ring homomorphism f : R→ A such that f(u) is a unit for each u ∈ U . We
want to show that there is exactly one ring homomorphism h : RU → A that
makes the following diagram commute:

R
f

&&

ι // RU

h
��
A

We can think of RU and A as R-algebras via ι and f , respectively. Then, the
diagram commutes if and only if the ring homomorphism h is an R-algebra
homomorphism. We claim that there is exactly one R-algebra homomor-
phism RU → A. Indeed, an R-algebra homomorphism R

[
{Tu}u∈U

]
→ A is

determined uniquely by the images of {Tu}u∈U (and must send r 7→ f(r)

for all r ∈ R), while R-algebra homomorphisms RU → A correspond to R-
algebra homomorphisms Φ: R

[
{Tu}u∈U

]
→ A that vanish on {uTu − 1}u∈U ,

i.e. Φ(Tu) = (Φ(u))−1 for all u ∈ U , i.e. Φ(Tu) = (f(u))−1. There is
exactly one such Φ since f is given. Thus there is exactly one R-algebra
homomorphism h : RU → A. It is given by h(p+ IU ) =

(
p |Tu←(f(u))−1

)
for all p ∈ R

[
{Tu}u∈U

]
. Thus the pair (RU , ι) satisfies the universal prop-

erty of
(
S−1R, ιS−1R

)
, and so RU

∼= S−1R by a ring isomorphism sending
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p+ IU 7→ p |Tu←(f(u))−1 and r
∏ℓ

i=1(Tui + IU )←[ r
u1···uℓ

. Clearly, this ring iso-
morphism is an R-algebra isomorphism (viewing RU and S−1R as R-algebras
via ι and ιS−1R, respectively).

An important special case is when U = {u} consists of a single element.
Then S = {un | n ≥ 0} and we denote S−1R by Ru as before. We record our
conclusion in this special case:

Lemma 4.33. Let u ∈ R. Then

Ru︸︷︷︸
:={un|n≥0}−1R

∼−→ R[T ]/(uT − 1)

by an R-algebra isomorphism sending r
un 7→ rTn + (uT − 1) and p

(
1
u

)
←[

p+ (uT − 1), p ∈ R[T ].

Remark 4.34. For each of M ⊗R N and for S−1R, we have constructions by
means of a quotient of a huge object by another huge object. To construct
M ⊗R N we took the quotient a huge free module by a huge submodule. In
the case of S−1R we took (here in this subsection) the quotient of a huge
polynomial algebra by a huge ideal. The quotient in each case was shown to
satisfy a universal property. In these two cases, the universal properties were
useful in order to understand morphisms from M ⊗RN and S−1R into other
objects. But it is useful to have additional constructions of the same objects.
In the case of M ⊗R N , we studied a set of tools to understand M ⊗R N

explicitly in special cases. In the case of S−1R, we started in fact with the
more explicit construction (in terms of equivalence classes on pairs). The
explicit construction of S−1R allowed us, for example, to study extension
and contraction of ideals for the localization map R → S−1R (this would
have been difficult to do directly using the universal property, which deals
with morphisms from S−1R to other rings).

5. Nakayama’s lemma

Nakayama’s lemma is a simple yet powerful tool for studying finitely
generated modules. It is particularly useful for finitely generated modules
over local rings.

Proposition 5.1 (Cayley–Hamilton). Let M be a finitely generated R-
module. Let f : M → M be an R-linear map. Let a be an ideal of R such
that20 f(M) ⊂ aM . Then there is n ≥ 1 and a1, . . . , an ∈ a such that

fn + a1f
n−1 + · · ·+ anf

0 = 0

20aM is the submodule of M generated by {am | a ∈ a,m ∈ M}
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(an equality in EndR(M) := HomR(M,M), where fk is f composed with
itself k times).

Proof. Take a generating set {m1, . . . ,mn} for the R-module M . Each
element of aM is an a-linear combination of m1, . . . ,mn. Since f(M) ⊂ aM ,
we have

(5.1)

 f(m1)
...

f(mn)

 = P

 m1
...
mn


for some matrix P ∈Mn×n(R) with entries in a.

The R-module M is defined by some structure ring homomorphism ρ : R→
EndM . This makes EndM into a (noncommutative) R-algebra. An R-
algebra homomorphism R[T ] → EndM is determined by the image of T ,
and every choice of image for T extends to an R-algebra homomorphism21.
We send T to f . Thus M becomes an R[T ]-module, where R acts on M as
before, and Tm = f(m) for all m ∈M .

Then (5.1) can be written in the form:

(5.2) T

 m1
...
mn

 = P

 m1
...
mn

 .

That is, the matrix Q := T · In − P ∈Mn×n(R[T ]) satisfies Q

 m1
...
mn

 = 0,

where In ∈ Mn×n(R[T ]) is the identity matrix. Multiplying both sides by

the adjugate matrix adjQ on the left, we have (detQ)

 m1
...
mn

 = 0. Thus,

detQ︸ ︷︷ ︸
∈R[T ]

m = 0 for all m ∈M (since m1, . . . ,mn generate the R-module M).

In other words, the image of degQ ∈ R[T ] in EndM , obtained by substituting
f for T , is the zero endomorphism. But detQ is a monic degree-n polynomial,
where the coefficients of T 0, . . . , Tn−1 are in a (since the entries of P are in
a). □

21If we wanted to generate an R-algebra homomorphism R[T1, . . . , Tn] → B for some
non-commutative ring B, we would have to make sure that the images of T1, . . . , Tn

commute. But with only one variable this is not an issue.
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Corollary 5.2. Let M be a finitely generated R-module, and let a be an ideal
of R such that aM = M . Then there is a ∈ a such that am = m for all
m ∈M .

Proof. Apply Proposition 5.1 with f = idM . Then (1 + a1 + · · ·+ an) idM =

0 in EndR(M), ai ∈ a. Set a = −(a1 + · · ·+ an). □

Definition 5.3. The Jacobson radical J(R) of the ring R is the intersection
of all maximal ideals of R.

Example 5.4.
(1) For a local ring (R,m), J(R) = m.
(2) J(Z) = {0} (0 is the only integer divisible by all prime numbers).

Proposition 5.5. x ∈ J(R) if and only if 1−xy is a unit in R for all y ∈ R.

Proof. If there is y ∈ R such that 1 − xy is not a unit, then 1 /∈ (1− xy),
and so (1− xy) ⊂ m for some maximal ideal m of R. If x ∈ J(R) then x ∈ m

and so x+ (1− xy)︸ ︷︷ ︸
=1

∈ m, a contradiction.

If x /∈ J(R) then x /∈ m for some maximal ideal m of R, and thus
m+(x) = R, i.e. t+xy = 1 for some t ∈ m and y ∈ R. Thus, 1−xy = t ∈ m,
and so 1− xy is not a unit. □

Proposition 5.6 (Nakayama’s lemma). Let M be a finitely generated R-
module, and a ⊂ J(R) an ideal of R such that aM =M . Then M = 0.

Proof. By Corollary 5.2, there is a ∈ J(R) such that am = m for all m ∈M ,
i.e. (1− a)m = 0. By Proposition 5.5, 1− a is a unit of R, and thus m = 0

(for all m ∈M). □

Corollary 5.7. Let M be a finitely generated R-module, N ⊂M a submodule,
a ⊂ J(R) an ideal of R such that aM +N =M . Then22 N =M .

Proof. We have a(M/N) =

aM +N︸ ︷︷ ︸
=M

/N = M/N , and so M/N = 0 by

Proposition 5.6. □

As you can see, the larger the Jacobson radical - the more useful Nakayama’s
lemma is. It is most useful for a local ring (R,m) since J(R) = m is very
large. You will study further applications of Nakayama’s lemma in Example
Sheet 3, and also later in the course. For example, you will be asked to
prove that if M is a finitely generated module over a local ring (R,m) and

22I remember this corollary as “J(R)M is small when M is finitely generated”. It is
small in the sense that J(R)M +P will never be all of M if P is a proper submodule of M .
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{x1 +mM, . . . , xn +mM} is a spanning set for the R/m-vector spaceM/mM ,
then {x1, . . . , xn} generates M . This is useful because often vector spaces
are easier to understand than more general modules.

6. Integral and finite extensions (Part I)

Definition 6.1. Let A be an R-algebra. An element x ∈ A is integral over R
(or R-integral) if there is a monic polynomial f ∈ R[T ] such that f(x) = 0.

Recall that x ∈ A is R-algebraic if there is a polynomial (not necessarily
monic) f ∈ R[T ] such that f(x) = 0. So every integral element is algebraic.

Example 6.2.

(1) If K is a field and A is a K-algebra, then x ∈ A is K-integral if and
only if x is K-algebraic.

(2) Later we will show that:
(a) The set of Z-integral elements in Q is exactly Z. But all elements

of Q are Z-algebraic (indeed, for a, b︸︷︷︸
̸=0

∈ Z, a
b is a root of

bT − a ∈ Z[T ]).
(b) The set of Z-integral elements in Q

(√
2
)

is Z
[√

2
]
.

(c) The set of Z-integral elements of Q
(√

5
)

is Z

[
1 +
√
5

2

]
︸ ︷︷ ︸

⊋Z[
√
5]

.

Definition. An R-module M is faithful if the structural ring homomorphism
R→ EndM of M is injective (i.e. for every 0 ̸= r ∈ R there is m ∈M such
that rm ̸= 0).

Example 6.3. If R ⊂ A are rings then A is an R-algebra, and so A is also an
R-module. In fact, A is a faithful R-module: If 0 ̸= r ∈ R then r · 1A = r ̸= 0.

Lemma 6.4. Let R ⊂ A be rings and x ∈ A. Considering R[x] ⊂ A, we see
that A is also an R[x]-module. Then x is R-integral if and only if there is
M ⊂ A such that both of the following condition hold:

i) M is a faithful R[x]-submodule of A, i.e.,
(a) M is an R-submodule of A.
(b) xM ⊂M .
(c) For all 0 ̸= p ∈ R[x] there is m ∈M such that pm ̸= 0.

ii) M is finitely generated as an R-module.

Proof. First, assume that (i) and (ii) hold. Since xM ⊂ M , we have an
R-linear map f : M →M , f(m) = xm. Since M is finitely generated over R,
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Cayley–Hamilton gives us:

(6.1) fn + r1f
n−1 + . . .+ rnf

0 = 0 (in EndRM)

for some r1, . . . , rn ∈ R, n ≥ 1. Take any m ∈M and evaluate both sides of
(6.1) at m:

(6.2)
(
xn + r1x

n−1 + · · ·+ rnx
0
)
m = 0 .

Since (6.2) holds for all m ∈M , and since M is faithful as an R[x]-module,
this means that

xn + r1x
n−1 + · · ·+ rnx

0 = 0 ,

that is, x is R-integral.
In the other direction, assume that x is R-integral. Then xn + r1x

n−1 +

. . . + rnx
0 = 0 for some n ≥ 1 and r1, . . . , rn ∈ R. Thus, the finitely

generated R-submodule M = spanR
{
x0, . . . , xn−1

}
of A satisfies xM ⊂ M

(since x · xn−1 = −
(
r1x

n−1 + . . .+ rnx
0
)
). That is, M is an R[x]-submodule

of A. Furthermore, M is a faithful R[x]-module because 1A︸︷︷︸
=x0

∈ M and

p · 1A = p ̸= 0 for all 0 ̸= p ∈ R[x]. □

Definition 6.5. Let A be an R-algebra.
(1) A is integral (over R) if every a ∈ A is R-integral.
(2) A is finite (over R) if A is finitely generated as an R-module.

Proposition 6.6. Let A be an R-algebra. The following conditions are
equivalent:

i) A is a finitely generated integral R-algebra.
ii) A is generated as an R-algebra by a finite set of R-integral elements.
iii) A is a finite R-algebra.

Proof. (i) ⇒ (ii): Clear.
(ii) ⇒ (iii): Let α1, . . . , αm ∈ A be R-integral elements that generate A

as an R-algebra. Then A = spanR{α
e1
1 · · ·αem

m | ei ≥ 0}. Since each αi is
R-integral, we have

αni
i + ri,1α

ni−1
i + . . .+ ri,niα

0
i = 0

for some ni ≥ 1, ri,1, . . . , ri,ni ∈ R (for each 1 ≤ i ≤ m). Thus αni
i ∈

spanR

{
αni−1
i , . . . , α0

i

}
. Hence (check!) αe1

1 · · ·αem
m ∈ spanR

{
αf1
1 · · ·α

fm
m | 0 ≤ fi ≤ ni − 1

}
︸ ︷︷ ︸

=:S
for all e1, . . . , em ≥ 0. Thus the finite set S generates A as an R-module.

(iii) ⇒ (i): Since A is finitely generated as an R-module, it is also finitely
generated as an R-algebra (by the same generating set). It remains to
show that every α ∈ A is R-integral. Write ρ : R → A for the structure
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homomorphism of A as an R-algebra, and consider its image ρ(R) ⊂ A and
the subring (ρ(R))[α] of A. Then A is a (ρ(R))[α]-module. In fact, 1 ∈ A and
so A is a faithful (ρ(R))[α]-module (as discussed above), finitely generated
as an R-module, and thus α is ρ(R)-integral by Lemma 6.4 (and hence α is
R-integral: check!). □

Proposition 6.7. Let A be an R-algebra, and let O be the set of R-integral
elements of A. Then O is an R-subalgebra of A.

Proof. If x, y ∈ O then the R-subalgebra generated by {x, y} is R-integral
by Proposition 6.6[(ii)⇒(i)]. Thus x+ y, xy ∈ O and {r · 1A}r∈R ⊂ O. So O
is an R-subalgebra of A. □

Proposition 6.8 (Transitivity of finiteness and integrality). Let A ⊂ B ⊂ C
be rings.

i) If C is finite over B and B is finite over A, then C is finite over A.
ii) If C is integral over B and B is integral over A, then C is integral

over A.

Proof. (i) Write C = spanB{γ1, . . . , γn}, γi ∈ C, n ≥ 1, andB = spanA{β1, . . . , βℓ},
βi ∈ B, ℓ ≥ 1. Take c ∈ C. Then c = b1γ1 + · · · + bnγn, bi ∈ B,
and bi = ai,1β1 + · · · + ai,ℓβℓ, ai ∈ A. So c =

∑n
i=1

∑ℓ
j=1 aijγiβj . So

C = spanA{γiβj | i ≤ n, j ≤ ℓ}, and thus C is finite over A.
(ii) Let c ∈ C. We need to show that c is A-integral. There is a monic

polynomial f = Tn + b1T
n−1 + · · ·+ bnT

0 ∈ B[T ], n ≥ 1, bi ∈ B, such that
f(c) = 0. Then f ∈ A[b1, . . . , bn]︸ ︷︷ ︸

=:A′

, and so c is integral over A′. By Proposition

6.6[(ii)⇒(iii)], A′[c] is finite over A′, and A′ is finite over A. Thus A′[c] is
finite over A by (i). Thus c is integral over A by Proposition 6.6[(iii)⇒(i)]. □

Definition 6.9. Let A be a ring.
(1) If A ⊂ B (rings):

(a) The integral closure23 ofA inB isA = {b ∈ B | b is integral over A}.
(b) A is integrally closed in B if A = A.

(2) If A is an integral domain:
(a) The integral closure of A is the integral closure of A in FracA.
(b) A is integrally closed if A is integrally closed in FracA.

Example 6.10. Z
[√

5
]

is not integrally closed because α =
(1+
√
5)

2 ∈
Q
(√

5
)

︸ ︷︷ ︸
=Frac(Z[

√
5])

\Z
[√

5
]

is a root of T 2 − T − 1, and is thus Z
[√

5
]
-integral.

23By Proposition 6.7, A is an A-subalgebra of B.
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However, Z and k[T1, . . . , Tn] are integrally closed by the following propo-
sition.

Proposition 6.11. Every unique factorization domain24 is integrally closed.

Proof. Let A be a UFD. Take x ∈ Frac(A) \ A. Then x = a
b for a, b ∈ A,

b ̸= 0, such that p | b, p ∤ a for some prime element p of A. If x is integral
over A then

(a/b)n + a1(a/b)
n−1 + . . .+ an(a/b)

0 = 0

for some a1, . . . , an ∈ A. On multiplying by bn, we see that:

an = −b
(
a1a

n−1b0 − . . .− ana0bn−1
)

.

Thus p | an and so p | a, a contradiction. □

Lemma 6.12. For rings A ⊂ B, the integral closure A of A in B is integrally
closed in B.

Proof. If x ∈ B is integral over A then A ⊂ A ⊂ A[x] are both integral
extensions (for the second inclusion, use Proposition 6.6[(ii)⇒(i)]). Thus
A ⊂ A[x] is an integral extension by Proposition 6.8. So x is A-integral, and
thus x ∈ A by the definition of A. □

Proposition 6.13. Let A ⊂ B be rings. Then:

i) If B is integral over A:
(a) B/b is integral25 over A/ bc︸︷︷︸

=b∩A

for every ideal b of B.

(b) S−1B is integral26 over S−1A for every multiplicative subset
S ⊂ A.

ii) If A is the integral closure of A in B and S−1A is the integral closure
of S−1A in S−1B, then S−1A = S−1A.
(from this (i-b) follows immediately, but the proof will use (i-b))

24Recall that A is a UFD if A is an integral domain such that every 0 ̸= x ∈ A can be
written as a product of irreducible elements, and this representation of x is unique up to
reordering and multiplying the factors by units. Recall: In a UFD an element is irreducible
if and only if it is prime.

25The composite ring homomorphism A ↪→ B ↠ B/b has kernel bc = b ∩A, and thus
gives rise to an injective map A/bc → B/b.

26Here S is a multiplicative subset of A, and so also of B. In general, the image of a
multiplicative subset under a ring homomorphism is multiplicative.

Let’s be extremely pedantic regarding why we can view S−1A as a subring of S−1B given
what we’ve proved previously (we’ve only discussed a similar thing in relation to modules,
not rings): View A and B as A-modules. Then we’ve seen that S−1A → S−1B, a

s
7→ a

s
is

an injective S−1A-linear map, and clearly this injective function is a ring homomorphism.
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Proof. (i-a) Write ι : A/bc → B/b for the natural inclusion ι(a+ bc) = a+ b.
Take b+ b ∈ B/b. Then bn + a1b

n−1 + · · ·+ anb
0 = 0 for some n ≥ 1, ai ∈ A.

Reduce modulo b:

(b+ b)n + (a1 + b)︸ ︷︷ ︸
=ι(a1+bc)

(b+ b)n−1 + · · ·+ (an + b)︸ ︷︷ ︸
=ι(an+bc)

(b+ b)0 = 0

and so b+ b is integral over A/bc.
(i-b) Take b

s ∈ S
−1B. Then bn + a1b

n−1 + · · ·+ anb
0 = 0 for some n ≥ 1,

ai ∈ A. Apply the localization map B → S−1B, b 7→ b
1 , and then multiply

by 1
sn : (

b

s

)n

+
a1
s

(
b

s

)n−1
+
a1
s2

(
b

s

)n−2
+ · · ·+ an

sn

(
b

s

)0

= 0 ,

that is, b
s is integral over S−1A.

(ii) By (i-b), S−1A is integral over S−1A. Now, take b
s ∈ S

−1B, integral
over S−1A. Then(

b

s

)n

+

(
a1
s1

)(
b

s

)n−1
+ · · ·+

(
an
sn

)(
b

s

)0

=
0

1

for some n ≥ 1, ai ∈ A, si ∈ S. Let t = s1 · · · sn, and multiply both sides by
(st)n:

=:a︷ ︸︸ ︷
(tb)n +

(
t1

s1
s1a1

)
(tb)n−1 + · · ·+

(
tn

sn
snan

)
(tb)0

1
=

0

1
and so there is u ∈ S such that ua = 0. Thus una = 0 and so

(utb)n +

(
u1
t1

s1
s1a1

)
(utb)n−1 + · · ·+

(
un
tn

sn
snan

)
(utb)0 = 0 .

So utb ∈ A, and so b
s = utb

uts ∈ S
−1A. □

Lemma 6.14. Let A ⊂ B be an integral extension of rings. Then:
i) A ∩B× = A× (where R× is the group of units of a ring R).
ii) If A and B are integral domains:

B is a field if and only if A is a field.

Proof. (i) The ⊃ inclusion is clear. To prove ⊂, take a ∈ A∩B×. Then there
is b ∈ B such that ba = 1, and we want to show that b ∈ A. Since b is integral
over A, there are a1, . . . , an ∈ A such that bn + a1b

n−1 + . . . + anb
0 = 0.

Multiply both sides by an−1 to see that b+a1 + a2a+ a3a
2 + · · ·+ ana

n−1︸ ︷︷ ︸
∈A

=

0, and thus b ∈ A.
(ii) If B is a field then, using (i), A× = A∩B× = A∩ (B \ {0}) = A \ {0},

and thus A is a field.
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Assume that A is a field. Take 0 ̸= b ∈ B. We need to show that b has an
inverse in B. Since b is integral over A, there are a1, . . . , an ∈ A, with n ≥ 1

minimal, such that

bn + a1b
n−1 + . . .+ anb

0 = 0 .

That is,

b

bn−1 + a1b
n−2 + . . .+ an−1︸ ︷︷ ︸
=:∆

 = −an .

Now, ∆ ̸= 0 by the minimality of n, and b ̸= 0 by assumption. Thus an ≠ 0

because B is an integral domain, and so an has an inverse a−1n ∈ A because
A is a field. Thus b

(
−a−1n ∆

)
= 1. □

Corollary 6.15. For an integral extension of rings A ⊂ B and a prime ideal
q of B, q∩A is a maximal ideal of A if and only if q is a maximal ideal of B.

Proof. The kernel of the composition A ↪→ B → B/q is q ∩ A and hence
induces an embedding A/(q ∩A) ↪→ B/q. Now, q ∩A is a prime ideal of A,
and so A/(q ∩A) and B/q are integral domains. Also, B/q is integral over
A/(q ∩A) by Proposition 6.13 since B is integral over A. By Proposition
6.14, A/(q ∩A) is a field ⇔ B/q is a field. Hence q ∩ A is maximal ⇔ q is
maximal. □

7. Noether’s Normalization Theorem and Hilbert’s
Nullstellensatz

7.1. Noether’s normalization theorem.

Definition 7.1. Let A be an algebra over a field k. Then x1, . . . , xn ∈ A are
k-algebraically independent if p(x1, · · · , xn) ̸= 0 for every nonzero polynomial
p ∈ k[T1, . . . , Tn].

Equivalently, x1, · · · , xn are k-algebraically independent if the k-algebra
homomorphism k[T1, . . . , Tn] → A, Ti 7→ xi, is injective (and is thus an
isomorphism k[T1, . . . , Tn]

∼−→ k[x1, . . . , xn], where k[x1, . . . , xn] is the k-
subalgebra of A generated by x1, · · · , xn).

Theorem 7.2 (Noether’s normalization theorem). Let A ̸= 0 be a finitely
generated algebra over a field k. Then there are k-algebraically independent
x1, . . . , xn ∈ A, n ≥ 0, such that A is finite over A′ := k[x1, . . . , xn].

Example 7.3 (Example of the proof method). Consider27 A = k
[
T, T−1

]
,

k a field. Then k[T ] ⊂ k
[
T, T−1

]
is not a finite extension. Indeed, T−1

is not integral over k[T ]: If T−1 were integral over k[T ] then
(
T−1

)n ∈
27k

[
T, T−1

] ∼= k[X,Y ]/(XY − 1) as k-algebras.
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spank[T ]

{(
T−1

)0
, . . . ,

(
T−1

)n−1} for some n ≥ 1, and so, multiplying by Tn,

we have 1 ∈ spank[T ]

{
Tn, Tn−1, . . . , T 1

}
, a contradiciton.

However, choose a scalar c ∈ k. Then the set
{
T, T−1 − cT

}
generates A as

a k-algebra since T−1 = cT +
(
T−1 − cT

)
. We will show that k

[
T−1 − cT

]
⊂

k
[
T, T−1

]︸ ︷︷ ︸
=k[T−1−cT ][T ]

is a finite extension (unless we are very unlucky in the choice of

c). We just need to show that T is integral over k
[
T−1 − cT

]
(by Proposition

6.6). Our method is:
(1) Consider the equation T−1T−1 = 0, holding in the algebra k

[
T, T−1

]
.

(2) Express the equation in the variables
{
T, T−1 − cT

}
rather than{

T, T−1
}

by subtracting and adding cT to T−1:((
T−1 − cT

)
+ cT

)
T − 1 = 0 .

(3) Expand the parentheses:

c︸︷︷︸
∈k

T 2 +
(
T−1 − cT

)︸ ︷︷ ︸
∈k[T−1−cT ]

T − 1︸︷︷︸
∈k[T−1−cT ]

= 0 .

(4) As long as we choose c ̸= 0, we can divide by c and see that T is
integral over k

[
T−1 − cT

]
.

The proof of Noether’s normalization theorem relies on the idea above,
together with an induction on the number of generators of A.

Proof of Noether’s normalization theorem. We give a proof that assumes that
the field k is infinite28.

Proof strategy: Induction on the minimal number of generators of A as
a k-algebra.

Base case (0 generators): A = k. Set n = 0, A′ = A.
Induction step: Assume that {x1, . . . , xm} ⊂ A generates A as a k-

algebra, and that the theorem holds when A is generated as a k-algebra by a
set with less than m elements.

If x1, . . . , xm are algebraically independent over k, we are done. Otherwise,
we shall see that ∃c1, . . . , cm−1 ∈ k such that xm is integral over the k-
subalgebra B = k[x1 − c1xm, . . . , xm−1 − cm−1xm] of A. Then A is finite
over B because A = B[xm]. By the induction hypothesis, B is finite over
some A′ = k[z1, . . . , zn], where z1, . . . , zn ∈ B are algebraically independent
over k. Thus A is finite over A′ by the transitivity of finiteness.

Remains to show Claim: ∃c1, . . . , cm−1 ∈ k such that xm is integral over
B. Proof of claim: Take a polynomial 0 ̸= f ∈ k[T1, . . . , Tm], r := deg f ,
such that f(x1, . . . , xm) = 0 (f exists since x1, . . . , xm are not algebraically

28See Mumford’s Red Book or Wikipedia for Nagata’s proof that works for every field.
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independent over k). Write f as the sum of its homogeneous parts (e.g.,
f =

(
T 2
1 T2 + 3T 3

2

)
+ (2T1T3 + T2T3) + (T2 + T3) + 1). Let F be the part

degree r (the highest degree).
For c1, . . . , cm−1 ∈ k (to be chosen later), we have

f(T1 + c1Tm, . . . , Tm−1 + cm−1Tm, Tm)︸ ︷︷ ︸
=:g(T1,...,Tm)

=F (c1, . . . , cm−1, 1)T
r
m

+ {terms of degree < r in Tm}

Above, the coefficient F (c1, . . . , cm−1, 1) of T r
m is in k, while those of the

lower powers of Tm are in k[T1, . . . , Tm−1].
We have defined a polynomial g ∈ k[T1, . . . , Tm] such that

g(x1 − c1xm, . . . , xm−1 − cm−1xm, xm) = f(x1, . . . , xm) = 0 .

Treating g as a polynomial in Tm over k[T1, . . . , Tm−1], the coefficient of T r
m

in g is the scalar F (c1, . . . , cm−1, 1) ∈ k, and the degree of g is at most r.
Thus xm is integral over B if F (c1, . . . , cm−1, 1) ̸= 0.

Luckily, F (T1, . . . , Tm−1, 1) is not the zero polynomial because F (T1, . . . , Tm)

is a nonzero homomogeneous polynomial29. Thus ∃c1, . . . , cm−1 ∈ k such
that F (c1, . . . , cm−1, 1) ̸= 0 (since k is an infinite field30). □

Remark 7.4. The proof above of Theorem 7.2 shows that for a finitely
generated k-algebra A = k[t1, · · · , tℓ] (k an infinite field), there is a matrix

P =

 1 ∗ ∗

0
. . . ∗

0 0 1

 ∈ Mℓ×ℓ(k) such that, for the elements x1, . . . , xℓ ∈

A given by

 x1
...
xℓ

 = P

 t1
...
tℓ

, we have A = k[x1, . . . , xℓ] (since P is

invertible), x1, . . . , xn are k-algebraically independent for some 0 ≤ n ≤ ℓ,
and A is finite over k[x1, . . . , xn]. [ non-examinable from here to the
end of this remark ] The proof gives the feeling that “almost” every P

works (at each step of the induction, we only needed to take scalars that are
not a root of a certain nonzero polynomial - almost every choice of scalars
works by Schwartz–Zippel). Arguing more carefully (but still according to
the general strategy of the proof given above), one can show that there is a
polynomial h in the

(
ℓ
2

)
variables corresponding the entries above the diagonal

in P , such that if P is upper triangular with 1-s on the diagonal and h(P ) ≠ 0

then x1, . . . , xn are k-algebraically independent for some n ≥ 0, and A is
finite over k[x1, . . . , xn]. In this situation, we say that a general P works

29You’ve seen this in Example Sheet 1, and showed that homogeneousity is needed.
30You’ve seen this too in Example Sheet 1: The Schwartz–Zippel Lemma.
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(people often say generic instead of general) to mean that all P work except
for the zeros of some nonzero polynomial. This kind of genarality can often
be related to the notion of a generic point of a scheme. This polynomial h
exists for any field k (even a finite field), but if k is finite and too small, it
is possible that there is no P with h(P ) ≠ 0. It is not much harder to give
a proof of Noether’s normalization theorem that works over any field: the
linear change of variables is replaced by a polynomial change of variables.
See Nagata’s proof in Mumford’s Red Book or on Wikipedia.

Remark 7.5. [ non-examinable ] For algebras over, say, C, the geometric
meaning of Noether’s normalization theorem is as follows: Let X be an
algebraic subset of An

C. Consider the map X ↪→ An
C

T−→ An
C

π−→ Ad
C, where

T is a C-linear isomorphism and π is the projection map π(x1, . . . , xn) =

(x1, . . . , xd), d = dimX. The theorem says that for most T (in partic-
ular, for at least one T ), the resulting map X → Ad

C is a finite map
with Zariski-dense image. This means exactly that the corresponding map
C[T1, . . . , Td]→ C[T1, . . . , Tn]/I(X) in the category of C-algebras is an injec-
tive finite C-algebra homomorphism. Being finite, the map f : X → Ad

C has
some wonderful properties: It maps closed sets to closed sets (a closed map).
So it must be surjective. Finiteness also implies quasi-finiteness: Every fiber
f−1(y), y ∈ Ad

C is finite (and non-empty since f is surjective). Finite maps
are also dimension-preserving, and so f maps each irreducible component
C of X to an irreducible algebraic set of the same dimension (the image of
C is closed since f is a closed map; irreducibility is preserved anyway by
any polynomial map). If we take one more variable and consider the map
C[T1, . . . , Td+1]→ C[T1, . . . , Tn]/I(X), it is clearly still finite, but not longer
injective. Geometrically it means that the corresponding map g : X → Ad+1

C
is finite, but no longer surjective. Still, g is closed and preserves the dimen-
sion of each irreducible component, and so if X is an irreducible algebraic
set of dimension d, then g(X) is an irreducible algebraic subset of Ad+1

C of
dimension d, i.e. an irreducible hypersurface. This is useful because every
hypersurface is the zero locus of a single polynomial.

7.2. Hilbert’s nullstellensatz.

Proposition 7.6 (Zariski’s lemma). Let k ⊂ K be fields, where K is finitely
generated as a k-algebra. Then K is a finite k-algebra (i.e., dimkK <∞).

Proof. By Noether’s normalization theorem, K is finite over a k-subalgebra
A = k[x1, . . . , xd], d ≥ 0, where x1, . . . , xd ∈ K are algebraically independent
over k. Since A and K are integral domains and K is a field, Lemma 6.14
says that A is a field as well. Thus d = 0 (because a polynomial algebra in
more than 0 variables is never a field because the variables are not units). □
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From now on, let k ⊂ Ω be fields, where Ω is algebraically closed.

Definition 7.7.
(1) Let S be a subset of k[T1, . . . , Tn]. Then V (S) = {x ∈ Ωn | f(x) = 0 ∀f ∈ S}.

A set of the form V (S) is called a k-algebraic subset of Ωn (or an
algebraic subset of Ωn defined over k).

(2) Let X be a subset of Ωn. Then

I(X) = {f ∈ k[T1, . . . , Tn] | f(x) = 0 ∀x ∈ X} .

Clearly, if a is the ideal of k[T1, . . . , Tn] generated by S then V (a) = V (S).

Remark 7.8. An algebraic subset X of Ωn (without the k- prefix) is defined
to be an Ω-algebraic subset of Ωn (i.e., setting k = Ω). Every k-algebraic
subset of Ωn is an algebraic subset of Ωn. But {i} is an algebraic subset of
C1 which is not an R-algebraic subset: A polynomial f ∈ R[T ] such that
f(i) = 0 must satisfy f(−i) = 0, so every R-algebraic subset of C1 that
contains i must also contain −i. Thus the k- prefix adds information. Note
that for iT ∈ C[T ], V ({iT})︸ ︷︷ ︸

⊂C1

= V ({T}) = {0}. So, {iT} gives rise to an

R-algebraic subset of C1 even though the coefficients of iT are not in R.
[ non-examinable from here to the end of the remark ] Assume
that char k = 0. Given f1, . . . , fs ∈ Ω[T1, . . . , Tn], generating an ideal a of
Ω[T1, . . . , Tn], there are algorithmic ways to start from f1, . . . , fs and generate
a certain generating set for a called a reduced Groebner basis g1, . . . , gt ∈ a.
Let k be the smallest subfield of Ω that contains all of the coefficients g1, . . . , gt.
Then a is generated by polynomials over k (clearly), and the coefficients of
any generating set of a generate a subfield of Ω that contains k (this requires
a proof). So, k is the smallest subfield of Ω such that the algebraic subset
V (a) of Ωn is a k-algebraic subset of Ωn. The proof of this algorithmic
observation relies on Galois descent. Here’s an example: For σ ∈ Gal(C/R)
and x = (x1, . . . , xn) ∈ Cn, let σx = (σ(x1), . . . , σ(xn)). For a subset X of
Cn let σX = {σ(x) | x ∈ X}. So Gal(C/R) acts on the collection of subsets
of Cn. It clearly sends a C-algebraic subset to a C-algebraic subset. Now,
set n = 1 and consider the action of Gal(C/R) = {id, τ} on C1. Then
τ{i} = {−i} ≠ {i}. Thus, the subgroup of Gal(C/R) of elements that fix {i}
is exactly H = {id} (the important notion here is fixing setwise, not pointwise,
but here we have a singleton anyway). Under the correspondence between
fields between R and C and subgroups of Gal(C/R), H = {id} corresponds
to C. So the smallest field k between R and C such that {i} is k-algebraic
is k = C (I did not prove this observation regarding Galois groups). This
works in general, and is often employed in classic algebraic geometry with
Gal
(
Qalg/Q

)
to find the smallest extension of Q that enables to define a
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given Qalg-algebraic set (Qalg is the subfield of C of algebraic numbers over
Q). These Galois considerations can be used to show that for a given ideal a
of Ω[T1, . . . , Tn], the intersection of all subfields k of Ω such that a can be
defined over k is itself a field over which a can be defined (an observation of
Weil). This is the field of definition of a. As mentioned earlier, these Galois
considerations are used to prove the algorithmic observations above regarding
reduced Groebner bases and fields of definition.

Recall, from field theory, that if k ⊂ L is a finite field extension (i.e.
dimk L <∞) then there is an injective k-algebra homomorphism φL : L→ Ω.
That is, Ω contains contains a copy of each finite extension L of k, such that
the inclusions of k in L and in Ω are compatible (i.e. restricting φL to k
results in the inclusion map k ⊂ Ω).

Theorem 7.9. Let a be an ideal of k[T1, . . . , Tn]. Then
i) Weak Nullstellensatz: V (a) = ∅ if and only if 1 ∈ a.
ii) Strong Nullstellensatz:

√
a = I(V (a)).

Proof. (i) Clearly V (a) = ∅ if 1 ∈ a. Conversely, assume that 1 /∈ a. Take m ∈
mspec k[T1, . . . , Tn] such that a ⊂ m. Then k[T1, . . . , Tn]/m is a field, finitely
generated as a k-algebra. Thus dimk k[T1, . . . , Tn]/m <∞ by Proposition 7.6.
Hence, we have an injective k-algebra homomorphism k[T1, . . . , Tn]/m→ Ω.
Composing with the quotient map k[T1, . . . , Tn]→ k[T1, . . . , Tn]/m, we obtain
a k-algebra homomorphism

φ : k[T1, . . . , Tn]→ Ω

such that kerφ = m. Recall that a k-algebra homomorphism φ from
k[T1, . . . , Tn] is determined uniquely by the images of T1, . . . , Tn. More
explicitly, we have φ(f) = f(x) for x := (φ(T1), . . . , φ(Tn)). Thus, for all
f ∈ a︸︷︷︸

⊂m
, we have

f(x) = φ(f) = 0 ,

and so x ∈ V (a), and thus V (a) ̸= ∅.
(ii) Let f ∈

√
a. Then f ℓ ∈ a, ℓ ≥ 1, and thus f ℓ(x) = 0 for every x ∈ V (a).

So f(x) = 0 since Ω is an integral domain. That is f ∈ I(V (a)).
Conversely, take f ∈ I(V (a))︸ ︷︷ ︸

⊂k[T1,...,Tn]

. We wish to show that some power of f lies

in a. Consider A = k[T1, . . . , Tn]/a, and let f be the image of f in A. Then,
our goal is to show that f is nilpotent. Equivalently, we need to show that

Af︸︷︷︸
={fm|m≥0}−1

A

= {0}. But Af
∼= k[T1, . . . , Tn, Tn+1]/

ae + (Tn+1f − 1)︸ ︷︷ ︸
=:b


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(here ae is the extension a from k[T1, . . . , Tn] to k[T1, . . . , Tn+1]), and so we
need to show that 1 ∈ b. By the Weak Nullstellensatz, it suffices to show that
V (b)︸ ︷︷ ︸
⊂Ωn+1

= ∅, as we do now: If (x1, . . . , xn+1)︸ ︷︷ ︸
=:x

∈ V (b) then (x1, . . . , xn)︸ ︷︷ ︸
=:x0

∈ V (a)︸ ︷︷ ︸
⊂Ωn

,

and so f(x0) = 0, and hence f(x) = 0. So

Tn+1f − 1︸ ︷︷ ︸
∈b

(x) = −1 ̸= 0, a

contradiction. □

Remark 7.10. Let a = (f1, . . . , ft) be an ideal of k[T1, . . . , Tn]. The weak
NSZ says that if V (a) = ∅ then there are p1, . . . , pt ∈ k[T1, . . . , Tn] such that

(7.1)
t∑

i=1

pifi = 1

(and clearly the existence of such p1, . . . , pt implies that V (a) = ∅). [ non-
examinable from here until the end of the remark ]. The effective
NSZ gives us a bound on the degrees of p1, . . . , pt. For example, it is known
that if V (a) = ∅ then we can find p1, . . . , pt satisfying (7.1) such that

(7.2) deg pi ≤ (max{3, deg f1, . . . ,deg ft})n︸ ︷︷ ︸
=:D

∀1 ≤ i ≤ t .

Now, for fixed f1, . . . , ft, (7.1) becomes system of linear equations in the
coefficients of p1, . . . , pt. By (7.2), if there’s a solution to this system, then
there’s a solution where all coefficients of each pi of degree higher than D are
0, giving a finite system of linear equations in finitely many variables. Thus
we may determine whether or not there is a solution via Gauss elimination.
This gives us an algorithm to check whether V (a) = ∅, which takes as input
a set of generators for a.

Remark 7.11. [ non-examinable ] The non-explicit part of the proof of the
weak Nullstellensatz was the existence of the maximal ideal m containing
a. For this we invoked (without saying so) Zorn’s Lemma. In fact, finding
such m is equivalent to finding a simulatenous solution for the polynomials
in a. Insted of invoking Zorn’s lemma, it is possible to find such a solution
explicitly using one of several algorithms, using resultants or Groebner bases.

Recall that an ideal I of a ring R is radical if I =
√
I. The formula√√

I =
√
I implies that the radical of an ideal is a radical ideal.

Fact 7.12.
i) For subsets X ⊂ Y of Ωn, we have I(X) ⊃ I(Y ). For subsets
S ⊂ T of k[T1, . . . , Tn], we have V (S) ⊃ V (T ). That is, both I(·) and
V (·) are inclusion reversing (and thus I(V (·)) and V (I(·)) respect
inclusions).
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ii) For S ⊂ k[T1, . . . , Tn], we have S ⊂ I(V (S)).
Proof: If f ∈ S and x ∈ V (S) then f(x) = 0 by the definition of
V (S), and so f vanishes on all of V (S), i.e. f ∈ I(V (S)).

iii) For a subset X ⊂ Ωn, we have X ⊂ V (I(X)).
Proof: If x ∈ X and f ∈ I(X) then f(x) = 0 by the definition
of I(X), and so x is a root of all I(X), i.e. x ∈ V (I(X)). So
X ⊂ V (I(X)).

iv) In fact, V (I(X)) is the smallest k-algebraic subset of Ωn that contains
X.
Proof:
(a) Clearly V (I(X)) is k-algebraic, and we’ve just seen that it con-

tains X.
(b) If X ⊂ Y for some k-algebraic set Y ⊂ Ωn, then Y = V (a) for

some ideal a of k[T1, . . . , Tn], and so

V (I(X)) ⊂ V (I(Y )) = V

I(V (a))︸ ︷︷ ︸
⊃a

 ⊂ V (a) = Y .

v) In particular, V (I(X)) = X if X ⊂ Ωn is k-algebraic.
vi) For every set X ⊂ Ωn, the ideal I(X) of k[T1, . . . , Tn] is radical.

Proof: If f ℓ ∈ I(X) then f ℓ(x) for all x ∈ X, and so f(x) = 0 since
Ω is an integral domain, i.e. f ∈ I(X).

The folllowing corollary of the strong NSZ relates geometry and algebra.

Proposition 7.13. Let n ≥ 0. Then we have a bijection:

(7.3) { k-algebraic subsets of Ωn } ↔ { radical ideals of k[T1, . . . , Tn] }

given by X 7→ I(X) and V (a)←[ a.

Proof. We’ve just seen that I(X) is a radical ideal for every k-algebraic
subset X ⊂ Ωn, and that X = V (I(X)). Now, let a be a radical ideal of
k[T1, . . . , Tn]. Then I(V (a)) =

√
a = a by the strong NSZ and since a is

radical. □

The set of radical ideals of k[T1, . . . , Tn] contains spec k[T1, . . . , Tn], which
contains mspec k[T1, . . . , Tn]. What a k-algebraic subsets of Ωn correspond
to prime and to maximal ideals? We study this a bit now.

Remark 7.14. Some observations regarding the bijection from Proposition
7.13.

(1) Since the bijection of Proposition 7.13 reverses inclusion, the set A of
minimal nonempty k-algebraic subsets of Ωn corresponds bijectively
with the set mspec k[T1, . . . , Tn] of maximal ideals of k[T1, . . . , Tn].
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(2) Let C = {{x} | x ∈ kn}. Then C ⊂ A because for every x ∈ kn, we
have {x} = V (mx) for mx := (T1 − x1, . . . , Tn − xn), showing that
{x} is k-algebraic (while minimality is clear for a singleton). Note
that mx is a maximal ideal since k[T1, . . . , Tn]/mx

∼= k is a field.
Applying I(·), we see that31 I({x}) = I(V (mx)) = mx.

(3) So, we have an injective map x 7→ mx : k
n → mspec k[T1, . . . , Tn], but

in general it is not a bijection. It will be a bijection if and only if
C = A but this is not always the case. One reason for this is that
A may contain sets that are not singletons. For example, for k = R
and Ω = C, the set X = {i,−i} is a minimal R-algebraic subset
of C1, corresponding to the maximal ideal I({i,−i}) =

(
T 2 + 1

)
.

This already proves that
(
T 2 + 1

)
is not of the form mx for any

x ∈ R1, but you can also observe that R[T ]/mx
∼= R for such x, while

R[T ]/
(
T 2 + 1

) ∼= C ≇ R.
(4) In the special case k = Ω, we have C = {{x} | x ∈ Ωn}, forc-

ing C = A (if every singleton is k-algebraic, then every minimal
nonempty k-algebraic set is a singleton). So the map x 7→ mx : Ω

n →
mspecΩ[T1, . . . , Tn] is a bijection.

(5) Claim: Every maximal ideal of k[T1, . . . , Tn] is a contraction of a
maximal ideal of Ω[T1, . . . , Tn].
Proof: Take m ∈ mspec k[T1, . . . , Tn]. Then m = I(X) for some
minimal nonempty k-algebraic subset of Ωn. Take x ∈ X. Then
V (I({x})) is the smallest k-algebraic subset of Ωn containing x,and
thus V (I({x})) = X by the minimality of X. Thus

m = I(X) = I(V (I({x}))) = I({x})

where in the last step we applied I(V (·)) to the radical ideal I({x}).
But I({x}) is equal to the intersection of IΩ({x}) := {f ∈ Ω[T1, . . . , Tn] | f(x) = 0}
with k[T1, . . . , Tn], while IΩ({x}) is the maximal ideal (T1 − x1, . . . , Tn − xn)
of Ω[T1, . . . , Tn] by our previous discussion.

(6) A possibly surprising minimal k-algebraic set: We saw in the case
k = R and Ω = C (and n = 1) that C ̸= A because A contains subsets
with more than one element. Now consider the case k = Fp(X),
i.e. the field of rational functions in X over Fp, and Ω = kalg (the
algebraic closure of k). Again take n = 1. The subset

{
X1/p

}
of Ω1 is

31This argument shows that I({x}) = mx by eventually relying on the strong NSZ,
but you can also just note that clearly mx ⊂ I({x}) and 1 /∈ ({x}), and an inclusion
of maximal ideal in a proper ideal must be an equality. Yet another argument for the
inclusion I({x}) ⊂ mx is to note that I({x}) = kerφx for the k-algebra homomor-
phism φx : k[T1, . . . , Tn] → k mapping Ti 7→ xi. If f ∈ kerφx then g(0, . . . , 0) = 0 for
g(T1, . . . , Tn) := f(T1 + x1, . . . , Tn + xn), and so the constant coefficient of g is 0, and
hence g ∈ (T1, . . . , Tn). Thus f = g(T1 − x1, . . . , Tn − xn) ∈ (T1 − x1, . . . , Tn − xn) ∈ mx.
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Fp(X)-algebraic since
{
X1/p

}
= V

 T p −X︸ ︷︷ ︸
=(T−X1/p)

p

. In this example,

not only that C does not exhaust A, but C does not even exhaust
the set of k-algebraic singletons. If you want, prove that this cannot
happen for separable extensions, i.e. that if k ⊂ Ω is separable (e.g.
when char k = 0 or when k = Fp and Ω = Falg

p ) then all sets in C \ A
have at least 2 elements.

Definition 7.15. An algebraic (i.e. Ω-algebraic) set X ⊂ Ωn is irreducible if
X ̸= ∅ and X is not equal to the union of two proper algebraic subsets of X.

Proposition 7.16. An algebraic set X ⊂ Ωn is irreducible if and only if the
radical ideal I(X) of Ω[T1, . . . , Tn] is prime.

Proof. Write X = V (a), a ⊂ Ω[T1, . . . , Tn] an ideal. Assume that X is
irreducible. Take f, g ∈ Ω[T1, . . . , Tn] such that fg ∈ I(X). Then for every
x ∈ X, f(x) = 0 or g(x) = 0. That is32, X ⊂ V (f) ∪ V (g), and so

X =

X ∩ V (f)︸ ︷︷ ︸
=V (a+(f))

 ∪
X ∩ V (g)︸ ︷︷ ︸

=V (a+(g))

 (a union of algebraic sets). Since X is

irreducible, this implies that X ⊂ V (f) or X ⊂ V (g). WLOG X ⊂ V (f).
Taking I(·), we have33 I(X) ⊃ I(V (f))︸ ︷︷ ︸

⊃
√

(f)

. Thus f ∈ I(X), and so I(X) is

prime.
Conversely, assume that I(X) is prime. Take X = X1 ∪X2, a union of

algebraic subsets of Ωn. Then I(X) = I(X1) ∩ I(X2). By ES2.Q2(a)34, this
means that I(X) = I(X1) or I(X) = I(X2). WLOG I(X) = I(X1). Then
V (I(X))︸ ︷︷ ︸

=X

= V (I(X1))︸ ︷︷ ︸
=X1

. Finally, note that 1 /∈ I(X) (prime ideals are proper

ideals by definition), and so X ̸= ∅ by the weak NSZ. □

Remark 7.17. [ non-examinable ] For an algebraically closed field Ω,
we have seen a bijection Ωn → mspecΩ[T1, . . . , Tn] given by x 7→ mx =

(T1 − x1, . . . , Tn − xn), and a bijection { irreducible algebraic subset of Ωn } →
specΩ[T1, . . . , Tn]. The second bijection extends the first if we think of each
point x ∈ Ωn as the algebraic set {x} (which is clearly irreducible).

32We write V (f) for V ({f}).
33By the strong NSZ, we have I(V (f)) =

√
(f), but here we only needed the easy-to-

prove inclusion.
34This exercise says that in an arbitrary ring R, if a prime ideal p is equal to the

intersection of finitely many ideals, p = a1 ∩ · · · ∩ aℓ, then p = ai for some i.
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Now to morphisms: A map Ωn → Ωℓ is regular if it maps t 7→ (f1(t), . . . , fℓ(t))

for polynomials f1, . . . , fℓ ∈ Ω[T1, . . . , Tn]. On the other hand, an Ω-algebra
homomorphism Ω[X1, . . . , Xℓ]→ Ω[T1, . . . , Tn] is given by the images g1, . . . , gℓ ∈
Ω[T1, . . . , Tn] of X1, . . . , Xℓ. Thus, in both cases the data defining the map
is an ℓ-tuple of elements of Ω[T1, . . . , Tn]. By the bijections mentioned above,
we may think of the regular map Ωn → Ωℓ as a map mspecΩ[T1, . . . , Tn]→
mspecΩ[X1, . . . , Xℓ] sending (T1 − t1, . . . , Tn − tn) 7→ (X1 − f1(t), . . . , Xℓ − fℓ(t))
for t = (t1, . . . , tn) ∈ Ωn (call maps of this form regular too). So, forget about
the viewpoint of Ωn and Ωℓ: We have regular maps mspecΩ[T1, . . . , Tn]→
mspecΩ[X1, . . . , Xℓ] and Ω-algebra homomorphisms Ω[X1, . . . , Xℓ]→ Ω[T1, . . . , Tn],
and each type of map is given by any chosen ℓ-tuple of polynomials in
Ω[T1, . . . , Tn]. Now, given an Ω-algebra homomorphism φ : Ω[X1, . . . , Xℓ]→
Ω[T1, . . . , Tn], φ(Xi) = fi, we have a contraction map φ∗ : specΩ[T1, . . . , Tn]→
specΩ[X1, . . . , Xℓ]. For a maximal ideal m = (T1 − t1, . . . , Tn − tn) of Ω[T1, . . . , Tn],
we have φ∗(m) = φ−1(m) = (X1 − f1(t), . . . , Xℓ − fℓ(t)) for t = (t1, . . . , tn).
Indeed, for g ∈ Ω[X1, . . . , Xℓ], we have φ(g) ∈ m if and only if g(f1(t), . . . , fℓ(t)) =
0 if and only if g ∈ (X1 − f1(t), . . . , Xℓ − fℓ(t)). In particular, in this case,
the contraction map φ∗ restricts to a map mspec[T1, . . . , Tn]→ mspecΩ[X1, . . . , Xℓ]

(in general, contraction maps do not necessarily send maximal ideals to maxi-
mal ideals). We have thus obtained a bijection

{ regular maps mspecΩ[T1, . . . , Tn]→ mspecΩ[X1, . . . , Xℓ] } ↔ { Ω-algebra homomorphisms Ω[X1, . . . , Xℓ]→ Ω[T1, . . . , Tn]}

given by φ∗ ←[ φ.
The fact that maximal ideals contract to maximal ideals remains true for

algebra homomorphisms between finitely generated k-algebras, where k is any
field, not necessarily algebraically closed. But, as we saw earlier, the injective
map kn → mspec k[T1, . . . , Tn], x 7→ mx, is not necessarily surjective. For
more general ring homomorphisms, such as the inclusion Z→ Q, maximal
ideals do not necessarily contract to maximal ideals ((0) ⊂ Q contracts to
(0) ⊂ Z). For this reason, among others, modern algebraic geometry considers
all of specR as a geometric space for any ring R. In the classical setting,
where we consider R = Ω[T1, . . . , Tn], this is the same as considering the
space of all irreducible algebraic subsets of Ωn instead of Ωn itself (noting
that each point x of Ωn gives rise to the irreducible algebraic set {x}, but
there are many additional irreducible algebraic subsets of Ωn). Taking spec

instead of mspec is not necessary in the classical setting, but it is crucial for
the study of general rings. The clear geometric interpretation of the classical
setting can give intuition for what ought to be true and what constructions
ought to be helpful in modren algebraic geometry.
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8. Integral and finite extensions (Part II)

The following definition generalizes the notion of an integral element over
a ring.

Definition 8.1 (Integrality over an ideal). Let A ⊂ B be rings, a be an ideal
of A.

i) For x ∈ B, x is integral over a (or a-integral) if there is a monic
polynomial f = Tn + a1T

n−1 + · · ·+ anT
0 ∈ A[T ], ai ∈ a, such that

f(x) = 0.
ii) The integral closure of a in B is {x ∈ B | x is a-integral}.

It turns out that the integral closure of a in B is an ideal of a subring of
B (in particular, closed under addition and multiplication35). The following
proposition shows more than that.

Proposition 8.2. Let A ⊂ B be rings, and let A be the integral closure of A
in B. Let a be an ideal of A. Then the integral closure of a in B is

√
aA (i.e.

the radical in A of the extension of a to A).

Proof. If b ∈ B is integral over a then bn + a1b
n−1 + · · ·+ anb

0 = 0, n ≥ 1,
a1, . . . , an ∈ a. Thus b ∈ A, and so b0, . . . , bn−1 ∈ A, and thus bn =

−
(
a1b

n−1 + · · ·+ anb
0
)
∈ aA. Thus b ∈

√
aA.

Conversely, let b ∈
√
aA. Then, bn ∈ aA for some n ≥ 1, that is,

(8.1) bn =

m∑
i=1

aixi ai ∈ a xi ∈ A, m ≥ 0 .

Each xi is integral over A and so M := A[x1, . . . , xm]︸ ︷︷ ︸
∋bn

is a finite A-algebra

by Proposition 6.6 (i.e. finitely generated as an A-module). Also, we have
an inclusion of A-modules: bnM ⊂ aM by (8.1). Thus, we may apply
Proposition 5.1 to the A-linear map f : M →M , f(m) = bnm, f(M) ⊂ aM ,
and see that

f ℓ + α1f
ℓ−1 + · · ·+ αℓf

0 = 0 ( in EndRM ),

αi ∈ a, ℓ ≥ 1. Evaluating at m = 1A︸︷︷︸
∈M

, we deduce that

(bn)ℓ︸ ︷︷ ︸
=bnℓ

+α1 (b
n)ℓ−1︸ ︷︷ ︸

=bn(ℓ−1)

+ · · ·+ αℓ (b
n)0︸ ︷︷ ︸
b0

= 0 ( in M ⊂ B ),

35But unlike the integral closure of A in B, the integral closure of a in B does not have
to include 1A, and so is not always a subring of B.
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and so b is a-integral36. □

Corollary 8.3. Let A ⊂ B be rings, and let a be an ideal of A. Then the
integral closure of a in B is closed under addition and multiplication.

Proof. Immeidate from Proposition 8.2. □

Corollary 8.4. Let A ⊂ B be rings, and let a be an ideal of A. Let b ∈ B.
Then b is a-integral ⇔ b is

√
a︸︷︷︸
⊂A

-integral.

Proof. Let A be the integral closure of A in B. We need to show that
the integral closure of

√
a in B is contained in the integral closure of a

in B (and thus they are equal). By Proposition 8.2, our goal is to show√(√
a
)
A ⊂

√
aA. In general, for any ring homomorphism f : R → S and

ideal I of R37,
√
I
e ⊂
√
Ie. So

(√
a
)
A ⊂

√
aA. Taking

√
· on both sides, we

have
√(√

a
)
A ⊂

√√
aA =

√
aA. □

Proposition 8.5. Let A ⊂ B be integral domains, where A is integrally
closed. Let a ⊂ A be an ideal, and take b ∈ B. Consider the field extension
FracA ⊂ FracB. Then the following are equivalent:

i) b is integral over a.

ii)
b

1︸︷︷︸
∈FracB

is algebraic over FracA with minimal polynomial over FracA

of the form Tn + a1
1 T

n−1 + · · ·+ an
1 T

0, n ≥ 1, ai ∈
√
a.

Proof. Assume (2). Then,

bn + a1b
n−1 + · · ·+ anb

0

1
=

0

1
( in FracB ) ,

ai ∈
√
a, and so

bn + a1b
n−1 + · · ·+ anb

0 = 0 ( in B )

and thus b is
√
a-integral, and so b is a-integral by Corollary 8.4.

Assume (1). Let f ∈ (FracA)[T ] be the minimal polynomial of b
1 over

FracA. We wish to show that each coefficient of f belongs to
√
a
1

:={
a
1 | a ∈

√
a
}
. By Proposition 8.2,

√
a
1 is the integral closure of a in FracA

36Note how the expression showing that bn is a-integral show in fact that b is a-integral
simply because (bn)ℓ−i = bn(ℓ−i) for all 0 ≤ i ≤ ℓ. For the same reason, in general, if xn is
integral then so is x.

37You have seen this in an example sheet. Let’s show this again: If b ∈
√
I
e

then
b = b1f(x1) + · · ·+ bℓf(xℓ), bi ∈ B, xi ∈ A, xni

i ∈ I, ni ≥ 1. Set n = n1 + · · ·+ nℓ. Then
bn ∈ Ie, and so b ∈

√
Ie.
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since A is integrally closed. Thus, it suffices to show that the coefficients of
f are in FracA and are a-integral (they are in FracA by definition). Fix an
algebraically closed field Ω containing FracA, and let

(8.2) f =

ℓ∏
i=1

(T − αi) αi ∈ Ω α1 =
b

1
.

By expanding the brackets in (8.2), one sees that each coefficient of f is a
sum of products of α1, . . . , αℓ. Thus, by Corollary 8.3, it suffices to prove
that each αi is a-integral.

By our assumption (1), we have

bn + a1b
n−1 + · · ·+ anb

0 = 0 ( in B )

for some n ≥ 1 and a1, . . . , an ∈ a, and so h
(
b
1

)
= 0 for

h = Tn +
a1
1
Tn−1 + · · ·+ an

1
T 0 ∈ (FracA)[T ] .

For each 1 ≤ i ≤ ℓ, we have a (FracA)-algebra isomorphism φi : (FracA)
[
b
1

]
→

(FracA)[αi], φi

(
b
1

)
= αi, because38 b

1 and αi have the same minimal poly-

nomial f over FracA. Thus h(αi) = h
(
φi

(
b
1

))
= φi

h( b1
)

︸ ︷︷ ︸
=0

 = 0, where

the second equality follows since h is a (FracA)-algebra homomorphism and
since the coefficients of h are in FracA. So αi is integral over a. □

9. Cohen–Seidenberg Theorems (Going Up/Down)

Given an integral extension A ⊂ B, ι : A ↪→ B the inclusion map, we have
a contraction map ι∗ : specB → specA, ι∗(q) = q ∩ A. In this section we
study ι∗, and in particular, the fibers of ι∗. Similar results are true for any
ring homomorphism f : A→ B that makes B into an integral A-algebra. The
case of a general f follows from the case of the inclusion map ι.

For rings A ⊂ B and p ∈ specA, we let Ap = (A \ p)−1A (as usual) and
also Bp := (A \ p)−1B. Indeed, A \ p is a multiplicative subset of B. But
note that Bp is not a “localization of B at a prime ideal of B”. Importantly,
Bp is usually not a local ring - it can have more than one maximal ideal. The
following proposition gives a bijective correspondence between mspecBp and
the fiber of p under the contraction map ι∗ : specB → specA.

38Indeed, we have (FracA)-algebra isomorphisms (FracA)[T ]/(f) → (FracA)
[
b
1

]
and

(FracA)[T ]/(f) → (FracA)[αi], sending T + (f) 7→ b
1

and T + (f) 7→ αi, respectively.
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Proposition 9.1. Let A ⊂ B be an integral extension of rings, and let
p ∈ specA. Then there is bijection

(9.1) {q ∈ specB | q ∩A = p} ↔ mspecBp

given by extension and contraction of ideals along the localization map B → Bp,
i.e. q 7→ qBp and mc ←[ m.

Proof. By Proposition 4.16, applied to the localization map B → Bp, exten-
sion and contraction of ideals gives a bijection {q ∈ specB | q ∩A ⊂ p} ↔
specBp, restricting to an injective map {q ∈ specB | q ∩A = p} → specBp.
It remains to show that the image of the latter map is precisely mspecBp.

Let S = A\p, and take q ∈ specB such that q∩A = p. Then qBp ∈ specBp

by Proposition 4.16. By Proposition 6.13, the extension Ap ⊂ Bp is integral.
Thus qBp ∈ mspecBp if (qBp) ∩ Ap ∈ mspecAp by Corollary 6.15. This is
indeed the case: By Proposition 4.14,

(qBp) ∩Ap = S−1q ∩ S−1A = S−1(q ∩A) = S−1p = pAp ,

while pAp is the unique element of mspecAp.
Conversely, take m ∈ mspecBp. By Proposition 4.16, every ideal of Bp

is extended from B, and in particular (mc)Bp = m (and mc ∈ specB). It
remains to show that mc ∩ A = p. Consider the following commutative
diagram:

A

��

// B

��
Ap

// Bp

Contracting m to Ap and then to A results in the same prime ideal of A
obtained by contracting m to B and then to A. Since Ap ⊂ Bp is an integral
extension, the contraction of m to Ap is a maximal ideal. But pAp is the
unique maximal ideal of Ap, and it contracts to p in A. Thus, mc∩A = p. □

The following proposition says that all fibers of ι∗ : specB → specA are
not empty for an integral extension of rings A ⊂ B.

Proposition 9.2 (Lying over). Let A ⊂ B be an integral extension of rings.
Let p ∈ specA. Then there is q ∈ specB such that q ∩A = p.

Proof. Let S = A\p. By Proposition 9.1, it suffices to show that mspecBp ̸=
∅, i.e. that Bp is not the zero ring. Indeed, 0 /∈ S, and so Bp ̸= 0. □

Proposition 9.3 (Going up). Let A ⊂ B be an integral extension of rings,
let p1, p2 ∈ specA, p1 ⊂ p2, and q1 ∈ specB, q1 ∩ A = p1. Then there is
q2 ∈ specB such that q1 ⊂ q2 and q2 ∩A = p2.
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Proof. Since p1 = q1 ∩A, we have an injective map A/p1 ↪→ B/q1, a+ p1 7→
a+ q1, and B/q1 is integral over A/p1 by Proposition 6.13. By Proposition
9.2, there is q2/q1 ∈ specB/q1, q2 ∈ specB, that contracts to p2/p1 in A/p1.
Thus q2 contains q1, and q2 contracts to p2 in A by the following commutative
diagram:

A

��

// B

��
A/p1 // B/q1

Indeed, q2/q1 contracts to p2/p1 in A/p1, which contracts to p2 in A. On the
other hand, q2/q1 contracts to q2 in B. The commutativity of the diagram
implies that q2 contracts to p2 in A. □

Proposition 9.4 (Incomparability). Let A ⊂ B be an integral extension of
rings, and let q, q′ be prime ideals of B such that q ∩A = q′ ∩A and q ⊂ q′.
Then q = q′.

Proof. Let p = q ∩A = q′ ∩A. By Proposition 9.1, qBp and q′Bp belong to
mspecBp. Since qBp ⊂ q′Bp, it follows that qBp = q′Bp. By Proposition 9.1
again, we have q = q′. □

Proposition 9.5 (Going down). Let A ⊂ B be an integral extension of
integral domains, A integrally closed (in FracA). Let p1, p2 ∈ specA, p1 ⊃ p2,
and q1 ∈ specB, q1 ∩ A = p1. Then there is q2 ∈ specB such that q1 ⊃ q2
and q2 ∩A = p2.

Proof. Consider the composite map A → B → Bq1 . The localization map
is injective since B is an integral domain. We want to show that p2 is
contracted from a prime ideal n of Bq1 because then q2 := n ∩B is contained
in q1 and contracts to p2 i n A. To show that p2 is a contracted ideal w.r.t.
A→ B → Bq1 , we need to show that (p2Bq1)∩A ⊂ p2 (the reverse inclusion
always holds when extending and then contracting). Think of the extension
p2Bq1 in two steps: p2 7→ p2B 7→ p2Bq1 .

Take y
s ∈ (p2Bq1) ∩ A, y ∈ p2B, s ∈ B \ q1 (every element of p2Bq1 is of

this form). Since B is integral over A, the integral closure of p2 in B is
√
p2B.

Thus y is integral over p2. Thus, by Proposition 8.5, the minimal equation39

of y over FracA is of the form

yr + u1︸︷︷︸
∈p2

yr−1 + · · ·+ ur︸︷︷︸
∈p2

= 0 .

39The minimal equation is just the equation f(y) = 0, where f is the minimal polynomial
of y over FracA.
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Now, y︸︷︷︸
∈B

=
y

s︸︷︷︸
∈A

s︸︷︷︸
∈B

, and so y, s ∈ FracB and y
s ∈ FracA. Thus, the

minimal equation of s over FracA is obtained40 by writing(y
s
s
)r

+ u1︸︷︷︸
∈p2

(y
s
s
)r−1

+ · · ·+ ur︸︷︷︸
∈p2

= 0

and dividing by
(y
s

)r:
(9.2) sr +

(
s

y

)1

︸ ︷︷ ︸
∈FracA

u1︸︷︷︸
∈p2

sr−1 + · · ·+
(
s

y

)r

︸ ︷︷ ︸
∈FracA

ur︸︷︷︸
∈p2

= 0 .

But s ∈ B, and so s is integral over A, and thus Proposition 8.5 says that all

of the coefficients
(

s
y

)1
u1︸︷︷︸
∈p2

, . . . ,
(

s
y

)r
ur︸︷︷︸
∈p2

are in A.

Suppose that y
s /∈ p2. Then ui︸︷︷︸

∈p2

=
(y
s

)i
︸ ︷︷ ︸
/∈p2

(
s

y

)i

ui︸ ︷︷ ︸
∈A

, and so
(

s
y

)i
ui ∈ p2.

Thus sr ∈ p2B︸︷︷︸
⊂p1B=(q1∩A)B⊂q1

by (9.2), and so s ∈ q1, a contradiction. □

Definition 9.6. Let f : A→ B be a ring homomorphism. Then,

(1) f is finite (resp. integral) if it makes B into a finite (resp. integral)
A-algebra.

(2) f is flat if it makes B into a flat A-module.

Definition 9.7. Let f : A → B be a ring homomorphism. Consider the
contraction map f∗ : specB → specA. Then,

(1) f satisfies lying over if f∗ is surjective.
(2) f satisfies going up if for all p1 ⊂ p2 in specA and q1 ∈ specB such

that f∗(q1) = p1, there is q1 ⊂ q2 ∈ specB such that f∗(q2) = p2.
(3) f satisfies going down if for all p1 ⊃ p2 in specA and q1 ∈ specB such

that f∗(q1) = p1 there is q1 ⊃ q2 ∈ specB such that f∗(q2) = p2.

40In general, if we have a field extension K ⊂ L and elements x ∈ L and 0 ̸= k ∈ K,
then the minimal equation of kx can be obtained from the minimal equation of x by
multiplying by kr, where r is the degree of the minimal polynomial of x over K. Indeed,
this gives an equation showing that kx is algebraic over K, and if there was such an
equation of lower degree, then we could divide by kr to obtain a K-algebraicity equation
for x of degree < r, a contradiction. Alternatively, one notes that the subfields K(x) and
K(kx) of L are equal, and their dimensions over K are equal to the degrees of the minimal
polynomails of x and kx over K, respectively, and thus these degrees are equal.
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Remark 9.8. A ring extension A ⊂ B that satisfies going up (i.e. the inclusion
map ι : A→ B satisfies going up), must also satisfy lying over. Proof: Take
p ∈ specA. Then Bp ̸= 0 since 0 /∈ A \ p, and thus Bp has a maximal ideal
m. So the contraction q of m along the localization map B → Bp is a prime
ideal of B such that q∩ (A \ p) = ∅, i.e. q∩A ⊂ p. By the going up property
of A ⊂ B, applied to q ∩A ⊂ p, there is q2 ∈ specB such that q2 ∩A = p.

Remark 9.9. We’ve seen that the inclusion map ι : A → B of an integral
extension of rings satisfies going up (and hence also lying over). But every
ring homomorphism f : A→ B can be decomposed as A→ f(A)→ B, where
the first map is a quotient map, and the second map is the inclusion map of
the extension f(A) ⊂ B. This extension is integral if and only if f is integral.
A quotient map clearly satisfies lying over, going up and going down. We
conclude that every integral ring homomorphism f : A→ B satisfies going
up (and hence also lying over).

Remark 9.10. [ non-examinable ] Every flat ring homomorphism f : A→ B

satisfies going down (with no further conditions on the rings A and B).

Remark 9.11. [ non-examinable ] The Cohen–Seidenberg theorems have
geometric significance. For example, a ring homomorphism f : A → B

satisfies going up if and only if f∗ : specB → specA is a closed map under
the Zariski topology (i.e. maps closed sets to closed set). This is in contrast
to regular maps in general, say φ : X → C, where X =

{
(a, b) ∈ C2 | ab = 1

}
and φ(a, b) = x. Then imφ = C \ {0} is not closed in the Zariski topology
(since every polynomial vanishing on C \ {0} must vanish on the larger set C).
This implies that the natural C-algebra map C[T1]→ C[T1, T2]/(T1T2 − 1) is
not integral, as we’ve shown directly in the discussion preceding Noether’s
normalization lemma.

10. Primary Decomposition

Let p be a prime number and n ≥ 2. Then Z/(pn) is not an integral
domain, but for every zero divisor a + Z ∈ Z/(pn) we have p | a and so
(a+ Z)n = 0, and thus a+ Z is nilpotent. Thus, for every n ≥ 1, every zero
divisor in Z/(p)n is nilpotent.

On the other, in Z/(6), the elements 2+Z and 3+Z are zero divisors, but
not nilpotent.

Definition 10.1. Let I be an ideal of R. Then41:
i) I is prime if R/I ̸= 0 and the only zero divisor in R/I is 0.

41We recall the notions of prime and radical ideals in order to compare them to the
notion of primary ideals.
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ii) I is radical if the only nilpotent element in R/I is 0.
iii) I is primary if R/I ̸= 0 and all zero divisors in R/I are nilpotent.

Thus, an ideal is prime if and only if it is radical and primary. Note that
R itself is a radical ideal, but R is neither prime nor primary. Since every
nilpotent element is a zero divisor, we have the following implications:

Example 10.2. Let R = Z. Then (0) is a prime ideal (hence also radical
and primary). Let 0 ̸= x ∈ Z. Then,

i) (x) is prime if and only if |x| is a prime number.
ii) (x) is radical if and only if x is square-free.
iii) (x) is primary if and only if x = pn, n ≥ 1, for some prime number p.

Example 10.3. Thus (6) is radical, but not primary, while (9) is primary
but not radical. In Z, an ideal is primary if and only if it is a power pn of a
prime ideal p. But in general rings, the powers of prime ideals are not the
same as the primary ideals (we will give examples).

Proposition 10.4. Let I be an ideal of R.

i) If I is primary then
√
I ∈ specR.

Definition: For p ∈ specR, a p-primary ideal is a primary ideal
such that

√
I = p.

ii) If
√
I︸︷︷︸

=:m

∈ mspecR then I is primary m-primary.

(but if
√
I ∈ specR, I does not have to be primary).

iii) q1 ∩ · · · ∩ qn is p-primary if q1, . . . , qn are p-primary.
iv) If I has a primary decomposition (i.e. an expression I = q1 ∩ · · · ∩ qn,

qi primary), then it has a minimal primary decomposition (i.e. an
expression as above, where the prime ideals

√
q1, . . . ,

√
qn are distinct

and I ⊊
⋂

j ̸=i qi for all 1 ≤ j ≤ n).
[ This follows immediately from (iii) ]

v) If R is noetherian, then every ideal I of R has a primary decomposi-
tion.

Proof. See Example Sheet 3. □

Example 10.5. In Z, (90) = (2)∩
(
32
)
∩(5) is a primary decomposition. Pri-

mary decomposition in general rings generalizes the notion of factorization into
prime powers in Z, but the general concept only has partial uniquenss prop-
erties (see below). In the computation below, we will make use of ES3.6(a):
for ideals I and J of a ring R, we have

√
I + J =

√√
I +
√
J,
√
In =

√
I for

all n ≥ 1, and [ 1 ∈ I if and only if 1 ∈
√
I ].

Let p ∈ specR, n ≥ 1. If pn is primary then pn is p-primary since
√
pn = p.
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i) Not every primary ideal is a power of a prime ideal: Let
R = k[X,Y ] and q =

(
X,Y 2

)
. Then R/q ∼= k[Y ]/

(
Y 2
)
, where every

zero divisor is a multiple of Y and hence is nilpotent, and so q is
primary. Moreover,

√
q =

√
(X) + (Y )2

=

√√√√√√(X)︸ ︷︷ ︸
=(X)

+

√
(Y )2︸ ︷︷ ︸

=(Y )

=
√
(X) + (Y )︸ ︷︷ ︸

=(X,Y )

= (X,Y )

where the last equality follows since m := (X,Y ) is a maximal ideal.
Thus, if q = pn for some p ∈ specR and n ≥ 1 then necessarily p = m.
However m2 ⊊ q ⊊ m, and so q is not a power of a prime ideal.

ii) A power pn of a prime ideal p is not necessarily primary (al-
though

√
pn = p must be prime): Let R = k[X,Y, Z]/

(
XY − Z2

)
,

k a field, and let X,Y , Z be the images of X,Y, Z in R, respectively.
Then p =

(
X,Z

)
is prime since R/p ∼= k[Y ] is an integral domain.

But p2 =
(
X

2
, Z

2
, XZ

)
is not primary: XY = Z

2 ∈ p2 and X /∈ p2,

and so the image of Y in R/p2 is a zero divisor, but the image of Y
in R/p2 is not nilpotent: Indeed, Y does not belong to the radical√
p2 = p =

(
X,Z

)
of p2 since R/p ∼= k[Y ] in the natural way (i.e. Y

does not vanish in the quotient R/p).

Theorem 10.6. Let I be an ideal of R that has42 a minimal primary decom-
position I = q1 ∩ · · · ∩ qn, and write pi =

√
qi.

i) The associated prime ideals of I: p1, . . . , pn depend only on I

(and not on the chosen minimal primary decomposition). In fact,

{p1, . . . , pn} =
{√

(I : x) | x ∈ R
}
∩ specR

(the RHS clearly depends only on I).
ii) The isolated prime ideals of I: The set of minimal elements among

p1, . . . , pn consists exactly of the prime ideals of R corresponding to
the minimal prime ideals of R/I.

42Equivalently, we can just assume that I has any primary decomposition, by the
previous proposition. Note that not every ideal in every ring has a primary decomposition
- having a primary decomposition is an assumption about I.
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The embedded prime ideals of I: An associated prime ideal of I
is embedded if it is not isolated.

iii) The isolated primary components of I: If p1, . . . , pt, t ≤ n, are
the isolated prime ideals of I, then q1, . . . , qt depend only on I (in
fact, qi = Iec w.r.t. the localization map R→ Rpi).

Proof. (1) and (2) are exercises in Example Sheet 3. We skip the proof of (3),
but you can find it in Atiyah–Macdonald. □

Example 10.7. Let R = k[X,Y ], k a field, and I =
(
X2, XY

)
. Then:

I = (X) ∩ (X,Y )2︸ ︷︷ ︸
=(X2,XY,Y 2)

I = (X) ∩
(
X2, Y

)
are both primary decompositions of I:

i) (X) is prime and hence (X)-primary.

ii)
√
(X,Y )2 = (X,Y ) and

√
(X2, Y ) = (X,Y ), and (X,Y ) is a maxi-

mal ideal, and so (X,Y )2 and
(
X2, Y

)
are (X,Y )-primary.

iii) (X,Y )2︸ ︷︷ ︸
=(X2,XY,Y 2)

̸=
(
X2, Y

)
since, e.g. Y /∈ (X,Y )2.

iv) I = (X) ∩ (X,Y )2: ⊂ is clear. Take f ∈ (X) ∩ (X,Y )2. Then
f = aX = bX2 + cXY + dY 2, a, b, c, d ∈ k[X,Y ]. Then d = eX,
e ∈ k[X,Y ]. Thus X

(
a− bX − cY − eY 2

)
= 0, and so a ∈ (X,Y ),

and thus f ∈ X(X,Y ) = I.
v) I = (X) ∩

(
X2, Y

)
: ⊂ is clear. Take f ∈ (X) ∩

(
X2, Y

)
. Then

f = aX = bX2 + cY , a, b, c ∈ k[X,Y ]. Then c = dX, d ∈ k[X,Y ],
and thus X(a− bX − dY ) = 0, and so a ∈ (X,Y ), and hence f ∈
X(X,Y ) = I.

vi) So, the associated primes of I are (X) ⊂ (X,Y ), and thus (X) is the
only isolated prime of I, and (X) is also the only isolated primary
component of I.

Remark 10.8. Let I = q1 ∩ · · · ∩ qn be a minimal primary decomposition
of I, pi =

√
qi, where p1, . . . , pt are the isolated prime ideals of I. Then√

I = p1 ∩ · · · ∩ pt (check!), and this is a minimal primary decomposition of√
I because p1, . . . , pt are distinct, and there are no inclusions between them,

and if
⋂

i ̸=j pi ⊂ pj then pi ⊂ pi for some i ̸= j (ES2.2a), a contradiction.
Thus, if I is radical (i.e. I =

√
I) then I has a unique primary decom-

position (the intersection of the associated prime ideals of I, which are all
isolated). That is, for radical ideals the situation is simple in the following
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senses: (i) There are no embedded primes, (ii) The isolated primary com-
ponents are the isolated primes. So, in a noetherian ring (where all ideals
have a primary decomposition), to give a radical ideal is the same as to give
a finite collection p1, . . . , pn of prime ideals such that pi ⊈ pj for all i, j.

So, in a noetherian ring R, the process of passing from I to
√
I amounts

to remembering only the isolated prime ideals of I and forgetting all other
information about I. In R = k[T1, . . . , Tn] (fixing some algegbraically closed
field Ω ⊃ k), we have V (I) = V

(√
I
)

and I(V (I)) =
√
I. Thus, the

information recorded by the algebraic set V (I) is exactly
√
I, or, equivalently,

the set of isolated primes of I.

Remark 10.9. The notions of isolated and embedded primes of an ideal, and
of the isolated primary components, are central. The notion of the primary
decomposition is less useful in modern algebraic geometry, mostly because
of the non-uniqueness. Still, primary decompositions can be useful when
making explicit computations and coming up with counter-examples.

Remark 10.10. [non-examinable] For some rings R, not every ideal I has a
primary decomposition. If I has a primary decomposition, we’ve seen that
the set of isolated primes of I is, on one hand, finite, and on the other hand,
equal to the set of minimal prime ideals among those containing I. So, if
we construct a ring R that has infinitely many minimal primes ideals, then
the ideal (0) of R does not have a prime decomposition. The ring C[0, 1] of
continuous functions [0, 1]→ R is an example of this.

11. Direct and inverse limits, completions

Definition 11.1. Let43 C be one of the following categories: Sets, Groups,
Rings, R-modules, R-algebras (R a fixed ring).

i) A directed set (I,≤) is a partially ordered set such that ∀a, b ∈ I
there is c ∈ I such that a ≤ c and b ≤ c.

ii) A direct system over I is a pair
(
(Xi)∈I , (fij)i,j∈I

i≤j

)
, where each Xi

is an object and each fij : Mi →Mj is a morphism, such that:
(a) fii = idXi for all i.
(b) fjk ◦ fij = fik for i ≤ j ≤ k.

iii) An inverse system over I is a pair
(
(Yi)∈I , (hij)i,j∈I

i≤j

)
, where each Yi

is an object and each fij : Yj → Yi is a morphism, such that:
(a) hii = idYi for all i.
(b) hij ◦ hjk = hki for all i ≤ j ≤ k.

43Direct and inverse limits are more general, but I prefer we limit ourselves to these
categories.
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Example 11.2. Let I = N with the usual order ≤. Let p be a prime number.

i) Recall that for a, b ∈ N, if a | b then there is a ring44 embedding
Fpa ↪→ Fpb .
Let Xi = Fpi! , let fi,(i+1) : Fpi! → Fp(i+1)! be a fixed ring embedding
for all i ≥ 1, and let fij = f(j−1),j ◦ · · · ◦ fi,(i+1) for i ≤ j.
Then

(
(Xi), (fij)i≤j

)
is a direct system.

ii) Let Yi = Z/piZ, and for i ≤ j, let hij : Z/pjZ→ Z/piZ be the natural
projection.
Then

(
(Yi), (hij)i≤j

)
is an inverse system.

Definition 11.3. Let (I,≤) be a directed set.

i) Let D =
(
(Xi)i∈I , (fij)i≤j

)
be a direct system on I. The direct limit

lim−→Xi

of D is
(∐

i∈I Xi

)
/ ∼, where ∼ is the smallest equivalence relation

such that xi ∼ fij(xi) for all i ≤ j and xi ∈ Xi.
Equivalently, xi ∼ xj for xi ∈ Xi and xj ∈ Xj if and only if there is
k ∈ I, k ≥ i, k ≥ j, such that fik(xi) = fjk(xj).

ii) Let E =
(
(Yi)i∈I , (hij)i≤j

)
be an inverse system on I. The inverse

limit

lim←−Yi
of E is {

y ∈
∏
i∈I

Yi | yi = hij(yj) ∀i ≤ j

}
.

The notations lim−→ and lim←− for the direct and inverse limits, respectively,
supress the morphisms fij , but the morphisms are crucial to the constructions
and must be understood from the context.

The direct limit is equipped with natural homomorphisms Xj → lim−→Xi

for all j ∈ I. The inverse limit is equipped with natural homomorphisms
lim←−Yi → Yj for all j ∈ I.

Example 11.4.

i) lim−→Fpi is a field, with a ring homomorphism Fp → lim−→Fpi (necessarily
injective).

44In general, a ring homomorphism between fields is a field homomorphism. The two
notions are the same (when the domain and range rings are fields).
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(a) lim−→Fpi is algebraic over Fp. Indeed, take [x] ∈
(∐

i∈I Fpi!
)
/ ∼,

x ∈
∐

i≥1 Fpi ([·] standing for the ∼-equivalence class). Then

x ∈ Fpi! for some i ≥ 1, and so xpi! −x = 0. Thus [x]p
i!

− [x] = 0,
and so [x] is algebraic over Fp.

(b) The field lim−→Fpi is algebraically closed: Every polynomial in(
lim−→Fpi

)
[T ] is of the form [h], h ∈ Fpj! [T ] for some j ≥ 1 ([h]

here denotes the result of applying [·] to each coefficient of h).
The splitting field of h over Fpj! is isomorphic to a finite field Fpℓ ,
j! | ℓ, and Fpℓ embeds in Fpℓ! . So, h splits over Fpℓ! under some
embedding Fpj! → Fpℓ! . Thus h splits over Fpℓ! under every45

embedding Fpj! → Fpℓ! , and in particular under the embedding
fjℓ : Fpj! → Fpℓ! . Thus [h] = [fjℓ(h)] splits in lim−→Fpi (here fjℓ(h)
refers to applying fjℓ to each coefficient of h).

ii) Zp := lim←−Z/piZ the ring of p-adic integers.
For example p = 5. Each sequence (di)

∞
i=0 of integers, 0 ≤ di < 5,

gives rise to an element of Z5: x =
(∑i−1

k=0 dk · 5k + 5iZ
)∞
i=1

. You can
think of x as a number written in base 5, where the digits extend to
the left. The natural map Z5 → Z/5iZ reveals the rightmost i digits.
The number 1 in Z5 is simply

(
1 + 5iZ

)∞
i=1

. The number −1 in Z5 is(
4 + 5Z, 24 + 52Z, 124 + 53Z, 624 + 54Z, . . .

)
or, in base 5:(

45 + 5Z, 445 + 52Z, 4445 + 53Z, 44445 + 54Z, . . .
)

.

Remark 11.5. Our example of a direct limit was to form the “union” of a
collection of sets which are not subsets of one large sets, but have some
identifications between them. Another type of example is given by stalks
in algebraic geometry. There Xi is the set of certain functions on a certain
neighbourhood Ui of a fixed point x in some fixed space, and each morphsim
fij : Xi → Xj of the directed set is the restriction map, from Ui to Uj , of
functions (where i ≤ j if Uj ⊂ Ui).

45Let a | b be positive integers, and take two field embeddings σ, τ : Fpa → Fpb . Then
σ(Fpa) = τ(Fpa) because Fpb contains a unique copy of Fpa (namely, the set of roots of
T pa − T ). Thus, we have a field automorphism Fpa → Fpa given by x 7→ σ−1(τ(x)). A
field automorphism of Fpa must be of the form x 7→ xps , s ≥ 0, and so σ−1(τ(x)) = xps for
all x ∈ Fpa , i.e. τ(x) = σ

(
xps

)
= (σ(x))p

s

. Note that y 7→ yps defines an automorphism
of Fpb (not only of Fpa and of its copy inside Fpb). Now take a polynomial h ∈ Fpa [T ]

such that σ(h) ∈ Fpb [T ] splits into linear factors σ(h) =
∏ℓ

i=1

T − αi︸︷︷︸
∈F

pb

. Then τ(h) =

∏ℓ
i=1

(
T − αps

i

)
, and so τ(h) also splits into linear factors over Fpb .



COMMUTATIVE ALGEBRA 91

Example 11.6. Let (I,≤) be a directed set. Let D = (Xi, fij) be a direct
system on I, and let E = (Yi, hij) be an inverse system on I. Then lim−→Xi

(resp. lim←−Yi) enjoys a universal property w.r.t. D (resp. E) that characterizes
it uniquely:

(1) The universal property of the direct limit:
For an object A and a system of morphisms (gi : Xi → A)i∈I such that
gi = gj ◦ fij for all i ≤ j, there is a unique morphism g : lim−→Xi → A

such that each gi factors as Xj −→ lim−→Xi
gi−→ A, where the left map

is the canonical map from Xj to the direct limit.
Example: In the category of sets, a function from the disjoint

∐
iXi

union of sets into a set A is the same as a a collection of functions
(Xi → A)i∈I (this example is quite degenrate: the partial order ≤ is
reflextive x ≤ x, but has no other relations, so the direct system has
no morphisms).

(2) The univesal property of the inverse limit:
For an object B and a system of morphisms (gi : B → Yi)i∈I such that
gi = hij ◦ gj for all i ≤ j, there is a unique morphism g : B → lim←−Yi
such that each gj factors as B g−→ lim←−Yi −→ Yj , where the right
morphism is the canonical map from the inverse limit to Yj .
Example: Take the quotient maps gi : Z→ Z/piZ. Then, for i ≤ j,
gi factors as Z

gj−→ Z/pjZ
hij−→ Z/piZ. This gives rise to a map

g : Z→ lim←−Z/piZ︸ ︷︷ ︸
=:Zp

given by g(x) =
(
x+ piZ

)∞
i=1

.

We now generalize the construction of Zp.

Definition 11.7. Given a ring R and an ideal a of R, the a-dic completion
of R is R̂ = lim←−R/a

i.
More precisely, we have a directed set (N,≤), ≤ being the usual order on

N, and an inverse system
((
R/ai

)∞
i=1
, (fij)i≤j

)
, where fij : R/aj → R/ai is

the usual projection.

Example 11.8.

i) For R = Z and a = (p), p a prime number, we have R̂ = Zp.
ii) For R = k[T ], k a field, and a = (T ), we have R̂ = k[[T ]], the ring of

formal power series in T over k.
iii) ForR = k[T ] and a = (T1, . . . , Tn), we have ai = spank{T

e1
1 · · ·T en

n | e1 + · · ·+ en ≥ i},
and so R̂ = k[[T1, . . . , Tn]], the ring of formal power series in T1, . . . , Tn
over k.

There is a similar construction for modules:
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Definition 11.9. For an R-module M and an ideal a of R, the a-adic
completion of M is M̂ = lim←−M/aiM .

The a-adic completion is a special case of the following:

Definition 11.10. Let M be an R-module.

i) A filtration of M is a sequence of submodules (Mn)n≥0 such that
Mn ⊃Mn+1 and M0 =M .

ii) The completion of M w.r.t. to the filtration (Mn)n≥0 is lim←−M/Mn

(this refers to the direct system on N with M/Mn as the objects, and
with the projections as the morphisms).

So the a-adic completion of an R-module M is the completion of M w.r.t.
the filtration

(
aiM

)∞
i=0

.
Relative to the a-adic completions, M̂ becomes an R̂-module:(

ri + ai
)
i≥0 ·

(
mi + aiM

)
i≥0 :=

(
rimi + aiM

)
i≥0 .

Recall that for a multiplicative subset S of R: (i) If R is noetherian
then S−1R is noetherian, (ii) S−1R⊗R (·) is a flat R-module (equivalently,
M 7→ S−1M , f 7→ S−1f , is an exact functor). The analogous results for
a-adic completions are:

Theorem 11.11. Let R be a noetherian ring, and let R̂ be the a-adic com-
pletion of R, a an ideal of R. Then:

i) R̂ is noetherian.
ii) R̂⊗R (·) is an exact functor.
iii) If M is a finitely generated R-module then the map R̂ ⊗R M → M̂ ,

sending x⊗m 7→ xm, is an R̂-linear isomorphism.

Notably, all parts of Theorem 11.11 assume that the ring R is noetherian.
For a noetherian R, restricting attention to finitely generated R-modules, (ii)
and (iii) together imply that M 7→ M̂ is an exact functor.

As a consequence of Theorem 11.11(i) and Hilbert’s basis theorem, we
have:

Corollary 11.12. If R is a noetherian ring then R[[T1, . . . , Tn]] is noetherian.

Proof. R[[T1, . . . , Tn]] is isomorphic to the m-adic completion of R[T1, . . . , Tn]
for m = (T1, . . . , Tn). □

We will not prove Theorem 11.11. The proof could be found in the
excellent Chapter 10 of Atiyah–Macdonald. We will, however, study some
of the technical tools of that chapter: exactly those tools that will also be
needed in the chapter on dimension theory.
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12. Filtrations, Graded rings

12.1. Graded rings and modules.

Definition 12.1. A graded ring is a ring A together with a family (An)n≥0
of additive subgroups of A such that A =

⊕∞
n=0An (internal direct sum) and

AmAn ⊂ Am+n for all m,n ≥ 0.

Note that A0 is a subring of A:
(1) A0 is clearly an abelian subgroup of A, and is closed under multipli-

cation since A0A0 ⊂ A0+0.
(2) We show that 1A ∈ A0: Write 1A =

∑m
i=0 yi, yi ∈ Ai. Let zn ∈ An,

n ≥ 0. Then zn︸︷︷︸
∈An

= 1Azn =
∑m

i=0 yizn︸︷︷︸
∈An+i

. The LHS is in An and

so the RHS is equal to y0︸︷︷︸
∈A0

zn. Thus y0z = z for all z ∈ A, and so

1A = y0 ∈ A0.
Thus, each Am is an A0-module.

Example 12.2. k[T1, . . . , Tr] =
⊕∞

n≥0An, where An is the set of consisting
of 0 and all homogeneous polynomials of degree n.

Definition 12.3. Let A =
⊕∞

n≥0An be a graded ring.
(1) A graded A-module is an A-moduleM , M = ⊕∞n≥0Mn, Mn an additive

subgroup of M , such that AmMn ⊂ Mm+n for all m,n ≥ 0 (thus
each Mn is an A0-module).

(2) A homomorphism of graded A-modules is an A-module homomorphism
f :
⊕

n≥0Mn →
⊕

n≥0Nn such that f(Mn) ⊂ Nn for all n ≥ 0.
(3) An element x ∈M is homogeneous of degree n if x ∈Mn. Any y ∈M

can be written as y =
∑

n yn, yn ∈Mn, where all but finitely many
yn’s are 0. The nonzero yn are the homogeneous components of y.

(4) Write A+ = ⊕∞n≥1An (then A+ is an ideal of A: ker(A→ A0) = A+

for the natural projection A→ A0).

Proposition 12.4. The following are equivalent for a graded ring A =⊕∞
n=0An:

i) A is noetherian.
ii) A0 is noetherian and A is finitely generated as an A0-algebra.

Proof. (ii) ⇒ (i) by Hilbert’s basis theorem.
Assume (i). Then the ring A0 is noetherian since A0

∼= A/A+. Now, the
ideal A+ is generated by the set of all homogeneous elements of A of nonzero
degree, and so, since A is noetherian, the ideal A+ is also generated by a
finite set x1, . . . , xs of homogeneous elements, xi ∈ Aki (respectively), ki > 0.
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Let A′ be the A0-subalgebra of A generated by x1, . . . , xs. It suffices to
show that An ⊂ A′ for all n ≥ 0. We argue by induction on n. Clearly
A0 ⊂ A′. Now take y ∈ An, n > 0. Since y ∈ A+, we have y︸︷︷︸

∈An

=
∑s

i=1 rixi,

ri ∈ A. Applying the projection A→ An, y stays y, and rixi is mapped to
aixi for some ai ∈ An−ki . So y =

∑s
i=1 aixi. By the induction hypothesis

(note that ki > 0), each ai is a polynomial in x1, . . . , xs with coefficients in
A0. Hence y ∈ A′. □

12.1.1. The associated graded ring.

Definition 12.5. Let a be an ideal of R.
i) A filtration of an R-module M is a sequence (Mn)

∞
n=0 of submodules

of M such that M0 =M and Mn ⊃Mn+1 for all n ≥ 0.
ii) The filtration (Mn)

∞
n=0 is an a-filtration if aMn ⊂Mn+1 for all n ≥ 0.

iii) An a-filtration (Mn)
∞
n=0 is a-stable if aMn =Mn+1 for all large enough

n.

Example 12.6. (anM)n≥0 is a stable a-filtration.

Definition 12.7. Let a be an ideal of R. The associated graded ring of R
(w.r.t. a) is

Ga(R) =
∞⊕
n=0

an/an+1 (a0 = A)

This a graded ring, where multiplication is defined as follows: For x ∈ an

and y ∈ am, if x, y are the images of x, y in the summands an/an+1, am/am+1

(respectively), then x · y is the image of xy in an+m/an+m+1 (check that this
is well defined!).

For an R-module M and an a-filtration (Mn)n≥0, define

G(M) =
∞⊕
n=0

Mn/Mn+1 ,

which is a graded Ga(R)-module in a natural way: For x ∈ an and m ∈Mk, if
x,m are the images of x and m in an/an+1 and Mk/Mk+1 (respectively), then
x ·m is the image of xm in Mk+n/Mk+n+1. We write Gn(M) for Mn/Mn+1.

Proposition 12.8. Assume that the ring R is noetherian. Let a be an ideal
of R. Then:

i) Ga(R) is a noetherian ring.
ii) If M is a finitely generated R-module and (Mn)n≥0 is a stable a-

filtration of M , then G(M) is a finitely generated graded Ga(R)-
module.
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Proof. (i) Since R is noetherian, a is finitely generated by some x1, . . . , xs
Let xi be the image of xi if a/a2. Then Ga(R) = (R/a)⊕

⊕∞
n=1 a

n/an+1 is
generated as an R/a-algebra by x1, . . . , xn (check!). But R/a is a noetherian
ring, so Ga(R) is noetherian by Hilbert’s basis theorem.

(ii) Take n0 such that Mn0+r = arMn0 for all r ≥ 0. Then G(M) is
generated by

⊕
n≤n0

Mn/Mn+1 as a Ga(R)-module. Each Mn/Mn+1 is a
noetherian R-module (M is noetherian since it is finitely generated over the
noetherian ring R, and soMn also is), and is annihilated by a. So it is a finitely
generated R/a-module, and thus

⊕
n≤n0

Mn/Mn+1 is a finitely generated
R/a-module. Thus G(M) is finitely generated as a Ga(R)-module. □

12.2. Filtrations.

Definition 12.9. Let (Mn)n≥0 and (M ′n)n≥0 be filtrations of an R-module
M . Then (Mn)n≥0 and (M ′n)n≥0 are equivalent if there is n0 ≥ 0 such that
Mn+n0 ⊂ M ′n and M ′n+n0

⊂ Mn for all n ≥ 0 (check that this defines an
equivalence relation on the class of filtrations of M).

Lemma 12.10. Let a be an ideal of R. Then every stable a-filtration (Mn)n≥0
of an R is equivalent to (anM)n≥0 (and so all stable a-filtrations of M are
equivalent to each other).

Proof. Since (Mn)n≥1 is an a-filtration, for all n we have Mn ⊃ aMn−1 ⊃
a2Mn−2 ⊃ · · · ⊃ anM ⊃ an+n0M for any n0 ≥ 0. On the other hand, there
is n0 ≥ 0 such that aMn =Mn+1 for all n ≥ n0 since the a-filtration (Mn)≥0
is stable. Hence Mn+n0 = anMn0 ⊂ anM . □

12.2.1. The Artin–Rees Lemma. Let a be an ideal of R. Let M be an R-
module and (Mn)n≥0 an a-filtration of M . We now define a graded ring R∗

and a graded R∗-module M∗. We will use these constructions in order to
prove the Artin–Rees Lemma, but not later (unlike the associated graded
ring construction, which we will use in the chapter on dimension theory).

Let

R∗ :=
∞⊕
n=0

an ( a0 = R )

and

M∗ :=

∞⊕
n=0

Mn .

For x ∈ an and y ∈ aℓ (thought of as element of the n-th and ℓ-th summands
in the definition of R∗), the product of x and y in R∗ is xy ∈ an+ℓ, as an
element of the (n+ ℓ)-th summand of R∗. This makes R∗ into a graded ring.
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The x ∈ an (in the n-th summand of R∗) andm ∈Mℓ (in the ℓ-th summand
of M∗), the R∗-module structure on M∗ is given by thinking of xm ∈ anMℓ

as an element of the (n+ ℓ)-th summand of M∗ (indeed anMℓ ⊂Mn+ℓ since
(Mn)≥0 is an a-filtration). This makes M∗ into a graded R∗-module.

If the ring R is noetherian then a is generated by some x1, . . . , xr and R∗

is generated as an R-algebra by x1, . . . , xr ∈ a (thought of as elements of
the second summand in R∗ = R ⊕ a︸︷︷︸

here

⊕a2 ⊕ · · · ). So R∗ is noetherian by

Hilbert’s basis theorem.

Lemma 12.11. Let R be a noetherian ring, M a finitely generated R-module,
(Mn)n≥0 an a-filtration of M . Then the following are equivalent:

i) M∗ is a finitely generated R∗-module.
ii) The a-filtration (Mn)n≥0 is stable.

Proof. Observation 1: Each Mn is a finitely generated R-module since M
is a noetherian R-module since M is finitely generated and R is noetherian.

Observation 2: Consider the following R∗-submodule of M∗:

M∗n =M0 ⊕ · · · ⊕Mn ⊕
∞⊕
i=1

aiMn .

Then the ascending chain (M∗n)n≥0 stabilizes ⇔ the a-filtration (Mn)n≥0 is
stable.

Assume (i). We have seen that R∗ is noetherian whenever R is, and so M∗

is a noetherian R∗-module by (i). Thus (M∗n)n≥0 stabilizes, and so (Mn)n≥0
is stable.

Assume (ii). Then (M∗n)n≥0 stabilizes at some n0 ≥ 0. ButM∗ =
⋃

n≥0M
∗
n

(ascending union), and thus M∗ = M∗n0
, and we wish to show that M∗n0

is
finitely generated as an R∗-module. Now, M∗n0

is generated as an R∗-module
by Q :=

⊕n0
r=0Mr. Each Mr is a finitely generated R-module and thus Q is

generated by some finite set S as an R-module. The same set S generates
M∗ as an R∗-module. □

The Artin–Rees46 Lemma (see below) says that over a noetherian ring, a
stable a-filtration of a finitely generated module induces a stable a-filtration
on each submodule.

Proposition 12.12 (Artin–Rees Lemma). Assume that the ring R is noe-
therian. Let a be an ideal of R, M a finitely generated R-module, (Mn)n≥0 a
stable a-filtration of M , N a submodule of M . Then (N ∩Mn)n≥0 is a stable
a-filtration of N .

46There are several closely related results known as the Artin–Rees Lemma. They are a
direct consequence of our version.
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Proof. We have a(N ∩Mℓ) ⊂ N ∩ aMℓ︸︷︷︸
⊂Mℓ+1

, and so

N ∩Mℓ︸ ︷︷ ︸
=:Nℓ


ℓ≥0

is an a-

filtration of N . Thus N∗ =
⊕

ℓ≥0Nℓ is a graded R∗-module and a submodule
of M∗ =

⊕
ℓ≥0Mℓ. As discussed, R∗ is noetherian since R is. The a-filtration

(Mℓ)ℓ≥0 is stable and so M∗ is a finitely generated R∗-module by Lemma
12.11. So M∗ is a noetherian R∗-module. Thus N∗ is a finitely generated
R∗-module. So (Nℓ)ℓ≥0 is stable by Lemma 12.11. □

We will apply the Artin–Rees Lemma to study dimension, and see addi-
tional applications of the lemma in Example Sheet 4.

13. Dimension Theory

Definition 13.1.

i) The length of a chain p0 ⊊ · · · ⊊ pd of distinct prime ideals of R is d
(there are d+ 1 ideals in a chain of length d).

ii) The height ht p of p ∈ specR is the supremum of the set of lengths
of chains of distinct prime ideals of R contained in p.

iii) The Krull dimension (or just, dimension) of R is

dimR = sup{ht p | p ∈ specR} ,

and so
dimR = sup{htm | m ∈ mspecR}

(since a chain of prime ideals that does not end with a maximal ideal
can be extended).

Also, ht p = dimRp for all p ∈ specR, and so

dimR = sup{dimRm | m ∈ mspecR} .

Hence, the computation of the dimension of a general ring reduces to the
computations of the dimension of local rings.

Definition 13.2. For an ideal I of R,

ht I = inf{ht p | I ⊂ p ∈ specR} .

Remark 13.3. [ non-examinable ] You can view the definition of dimR as
analogous to the fact that for a k-vector space V , dimk V is the supremum
over the set of lengths of chains of distinct k-linear subspaces of V , e.g.
{0}×{0} ⊊ {0}×R ⊊ R×R shows that dimRR2 ≥ 2, and there is no longer
chain of distinct R-linear subspaces of R2 and so dimRR2 = 2. More on
this connection in any course in algebraic geometry. This particular example
corresponds to the chain (0) ⊂ (X) ⊂ (X,Y ) of prime ideals of R[X,Y ].
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Proposition 13.4. Let A ⊂ B be an integral extension of rings. Then

i) dimA = dimB.
ii) If A and B are integral domains and k-algebras, k a field, then

trdegk A = trdegk B.

Proof. (i) First, we show that dimA ≤ dimB. Take a chain

p0 ⊊ · · · ⊊ pd pi ∈ specA d ≥ 0 .

By Lying-over and Going-up (Propositions 9.2 and 9.3), there are q1 ⊂ · · · ⊂
qd, qi ∈ specB, such that qi ∩ A = pi. We must have qi ̸= qi+1 because
pi ̸= pi+1. Thus dimB ≥ d, and so dimB ≥ dimA.

Now, we show that dimA ≥ dimB. Take a chain

q0 ⊊ · · · ⊊ qd qi ∈ specB d ≥ 0 .

Contracting to A, we obtain a chain

q0 ∩A ⊂ · · · ⊂ qd ∩A ,

qi ∩ A ∈ specA. We must have qi ∩ A ̸= qi+1 ∩ A because qi ⊊ q and by
Incomparability (Proposition 9.4). Thus, dimA ≥ d, and so dimA ≥ dimB.

(ii) Exercise. □

Let A be a finitely generated k-algebra, k a field. By Noether’s normaliza-
tion theorem, we have an integral injective ring homomorphism k[T1, . . . , Tn]→
A, d ≥ 0. By ES3.Q10, dim k[T1, . . . , Tn] = n (you will prove a more general
fact in ES4). Thus dimA = n by Proposition 13.4(i). In particular, the
number n in Noether’s normalization theorem is determined uniquely by A.

Proposition 13.5. Let A be a finitely generated k-algebra, k a field, and an
integral domain. Then

dimA = trdegk A .

Proof. By Noether’s normalization theorem we have an embedding k[T1, . . . , Td]→
A. By Proposition 13.4,

dimA = dim k[T1, . . . , Td]︸ ︷︷ ︸
=d

and

trdegk A = trdegk k[T1, . . . , Td]︸ ︷︷ ︸
=d

.

□
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13.1. Hilbert functions and polynomials. Let A = ⊕n≥0An be a noe-
therian graded ring. By Proposition 12.4, A0 is a noetherian ring, and A is
generated as an A0-algebra by some x1, . . . , xs, xi ∈ Aki , ki > 0.

Let 0 ̸= M = ⊕n≥0Mn be a finitely generated graded A-module. Then
each Mn is an A0-module. Claim: Mn is a finitely generated A0-module.
Proof: We have M = spanA{m1, . . . ,mt}, mi ∈ Mri , ri ≥ 0. Thus Mn ={∑t

i=1 aimi | ai ∈ An−ri
}
. Thus

Mn = spanA0

xe11 · · ·xess ·mi | 1 ≤ i ≤ t,
s∑

j=1

kjej = n− ri

 .

From now on, we make another assumption:

The ring A0 is artinian .

Thus, each Mn is a finitely generated module over the artinian ring A0. So Mn

is both noetherian and artinian, and so it has finite length, i.e. ℓ(Mn) <∞
(see ES2.1b). Recall that the length of an A0-module P is supremum of
the set of lengths of all composition series for P . If A0 = k is a field then
ℓ(P ) = dimk P .

Definition 13.6. Let A =
⊕

n≥0An be a noetherian graded ring, generated
by x1, . . . , xs, xi ∈ Aki , ki > 0, where A0 is artinian. Let M =

⊕
n≥0Mn

be a finitely generated graded A-module. The Poincaré series of M is the
power series:

P (M,T ) =

∞∑
n=0

ℓ(Mn)T
n ∈ Z[[T ]]

(where R[[T ]] stands for the ring of formal power series over the ring R).

Theorem 13.7 (Hilbert–Serre). P (M,T ) is a rational function in T of the
form f(T )∏s

i=1(1−Tki)
, f(T ) ∈ Z[T ].

Proof. Recall that A is generated as an A0-algebra by x1, . . . , xs, xi ∈ Aki ,
ki > 0. The proof is by induction on s.

In the base case s = 0, P (M,T ) is in Z[T ] (i.e. a polynomial): Indeed,
in this case A = A0. Thus M is generated as an A0-module by some finite
subset S ⊂ M . Take n0 ≥ 0 such that S ⊂ M0 ⊕ · · · ⊕Mn0 . Then Mn = 0

for all n > n0, and so P (M,T ) is a polynomial.
Assume that s > 0 and that the theorem holds for s − 1. Write47 M =⊕
n∈ZMn, where Mn = 0 for all n < 0. Let n ∈ Z. Then m 7→ xsm : Mn →

47Previously, we defined graded module where the summands are indexed by Z≥0. But
we can do the same thing where the indices are in Z.
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Mn+ks is a homomorphism of A0-modules. Thus it gives rise to an exact
sequence of A0-modules

(13.1) 0→ Kn →Mn
xs−→Mn+ks → Ln+ks → 0

(Kn = ker(m 7→ xsm) and Ln+ks =Mn+ks/ im(m 7→ xsm)).
Let K = ⊕n∈ZKn and L = ⊕n∈ZLn+ks . Both K and L are graded A-

modules (For K, note that if m ∈ Kn and ai ∈ Ai, i ≥ 0, then aim ∈
Mn+i and xsaim = aixsm = 0, and so aim ∈ Kn+i. For L, we have
L = (⊕n∈ZMn+ks)/(⊕n∈Z im(m 7→ xsm : Mn →Mn+ks))). So the graded A-
modules K and L are finitely generated (since K and L are, respectively, a
submodule and a quotient of M , and A is noetherian). Both K and L are
annihilated by xs (check!). So both are finitely generated A0[x1, . . . , xs−1]-
modules.

Applying ℓ(·) to (13.1) (see ES1.Q12), we have

ℓ(Kn)− ℓ(Mn) + ℓ(Mn+ks)− ℓ(Ln+ks) = 0 .

Hence

ℓ(Mn+ks) · Tn+ks − T ksℓ(Mn) · Tn = ℓ(Ln+ks) · Tn+ks − T ksℓ(Kn) · Tn .

Summing over all n ∈ Z, we have

(13.2)
(
1− T ks

)
P (M,T ) = P (L, T )− T ksP (K,T ) .

The claim now follows from the induction hypothesis applied to L and
K. □

The rational functionR(T ) = f(T )∏s
i=1(1−Tki)

is holomorphic on {z ∈ C | |z| < 1},
and P (M,T ) =

∑∞
n=0 ℓ(Mn)T

n is the Taylor expansion of R(T ) at T = 0.
Thus the radius of convergence of P (M,T ) to R(T ) is at least 1.

At T = 1, R may have a pole (unless f vanishes at T = 1 to a high enough
order). Write d(M) for the order of the pole at T = 1 of of R(T ).

Claim: d(M) ≥ 0. Proof: If d(M) < 0 then R(T ) vanishes at T = 1.
Thus, for all k ≥ 0,

0 = lim
T→1−

(
f(T )∏s

i=1(1− T ki)

)
︸ ︷︷ ︸

=P (M,T )

= lim
T→1−

P (M,T )︸ ︷︷ ︸
=
∑

n≥0 ℓ(Mn)Tn

≥ lim
T→1−

ℓ(Mk)T
k

= ℓ(Mk) ,

and so ℓ(Mk) = 0 for all k ≥ 0. Hence M = 0, a contradiction.
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Example 13.8. Consider the polynomial ring A = k[T1, . . . , Ts] =
⊕

n≥0An,
where An is the additive subgroup consisting of 0 and all homogeneous
polynomials of degree n.

i) A is generated as an A0︸︷︷︸
=k

-algebra by T1, . . . , Ts ∈ A1. Thus k1 =

. . . = ks = 1 for this choice of generators.
ii) By Stars and Bars, there are exactly

(
s+n−1
s−1

)
monomials of degree n

in k[T1, . . . , Ts], and they form a k-linear basis for An. So ℓ(An) =

dimk An =
(
n+s−1

n

)
= p(n) for a polynomial p ∈ Q[T ] of degree s− 1.

iii) Thinking of A as a graded A-module48,

P (A, T ) =
∑
n≥0

(
n+ s− 1

n

)
Tn

=

∑
ℓ≥0

T ℓ

s

=
1

(1− T )s
,

which has the form predicted by Theorem 13.7.

The existence of the polynomial p ∈ Q[T ] as in (ii) of the example above,
in the situation of (i) in the same example, is a special case of the following
result.

Proposition 13.9 (Hilbert Polynomial). If k1 = . . . = ks = 1 then there is
a polynomial HPM ∈ Q[T ] of degree49 d(M)− 1 such that ℓ(Mn) = HPM (n)

for all large enough n (check that there is at most one such polynomial - and
hence there is exactly one!).

Proof. Write d = d(M). By the Theorem 13.7, and since d ≥ 0, there is
f ∈ Z[T ] such that ℓ(Mn) is the coefficient of Tn in f(T )

(1−T )d
, and f(1) ̸= 0.

Write f(T ) =
∑deg f

k=0 akT
k, ak ∈ Z. Now50

(1− T )−d =
∞∑
j=0

(
j + d− 1

j

)
︸ ︷︷ ︸

=:bj

·T j ,

48Arguing more directly, both the number of monomials of degree n in s variables, and
the coefficient of Tn in

(∑
ℓ≥0 T

ℓ
)s

, are equal to the number of elements of (Z≥0)
s whose

sum is n. So, we can make the computation even if we don’t remember the Stars and Bars
formula

(
n+s−1

n

)
.

49Convention: The degree of the zero polynomial is −1.
50Our convention:

(
n
−1

)
= 0 if n ≥ 0 and

(−1
−1

)
= 1.
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and so

ℓ(Mn) =

deg f∑
i=0

aibn−i ∀n ≥ deg f ,

where bn−i =
(
n−i+d−1

n−i
)
.

Now
(
n−i+d−1

n−i
)

is a polynomial in n of degree d− 1, and the coefficient of
nd−1 is 1/(d− 1)!. Thus, for all n ≥ deg f , ℓ(Mn) = p(n) for a polynomial
HPM ∈ Q[T ] of degree most d − 1, and the coefficient of nd−1 in HPM is

deg f∑
k=0

ak︸ ︷︷ ︸
=f(1)̸=0

/(d− 1)! ̸= 0, and so degHPM = d− 1. □

The function n 7→ ℓ(Mn) is the Hilbert function of the graded A-module M .
The polynomial HPM is the Hilbert polynomial of M . Note that HPM ∈ Q[T ]

sends Z≥0 to Z≥0, but usually HPM is not in Z[T ] (recall, for example, that
1
2T (T + 1) sends integers to integers).

Remark 13.10. [ non-examinable ] This remark motivates the need to
have a purely algebraic definition of dimension (i.e. the Krull dimension).
There are many other reasons to want this, not listed below, but I think the
following points, together, are particularly nice.

(1) Number of independent directions: Assume that dimC[T1, . . . , Tn]/I =

d, V (I) ⊂ Cn is irreducible, and x is a non-singular point of V (I) ⊂
Cn (almost all points are non-singular) then the dimension (over R)
of the tangent space to V (I) at x is 2d (the factor of 2 comes from
[C : R] = 2).

(2) pdim points with all entries in Fp: Let p be a prime number. If
f1, . . . , fr ∈ Fp[T ], dimFalg

p [T1, . . . , Tn]/ (f1, . . . , fr)︸ ︷︷ ︸
=J

= d, and V (J) ⊂

Falg
p is irreducible then∣∣V (J) ∩ Fn

p

∣∣ = (1 + ε)pd |ε| ≤ Cp−1/2 ,

where C depends only on J . That is, V (J) has approximately pd

points with all entries in Fp. This is the Lang–Weil bound. If V (J)

is not irreducible then we have a similar estimate
∣∣V (J) ∩ Fn

p

∣∣ ≈ cpd,
where c is the number of irreducible components of V (J) that can
be defined over Fp among the irreducible components of V (J) of
dimension d (this number can be 0 even if V (J) ̸= ∅).

(3) Computation of the dimension: Given an ideal I = (f1, . . . , fs) of
C[T1, . . . , Tn], we can compute a Groebner basis {g1, . . . , gt} (a special
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kind of generating set), and then read the dimension of C[T1, . . . , Tn]/I
easily. For example, in C[X,Y, Z], the polynomials Y 3 − Z2, X2 −
Y,XY −Z,XZ−Y 2 form a Groebner basis for the ideal I of C[X,Y, Z]
that they generate (w.r.t. to grlex order, to be precise). The leading
monomials (w.r.t. grlex) are Y 3, X2, XY,XZ. The set S = {X,Y } of
variables is of minimal cardinality among sets satisfying the following
property: each of the leading monomials above involves a variable in
S. Thus (this is a theorem) dimC[X,Y, Z]/I = |{X,Y, Z} \ S| = 1.
This works in general with any number of variables and any ideal I.
This theorem can be proved using Hilbert polynomials. The theorem
works over every algebraically closed field, not just over C.

(4) C vs. Falg
p : Let f1, . . . , fs ∈ Z[T1, . . . , Tn] generate an ideal I

of C[T1, . . . , Tn]. For a prime number p, let Ip be the ideal of
Falg
p [T1, . . . , Tn] generated by the images of f1, . . . , fs mod p. If

dimC[T1, . . . , Tn]/I = d and V (I) ⊂ Cn is irreducible, then for all
but finitely many prime numbers p we have dimC[T1, . . . , Tn]/I = d

and V (Ip) ⊂
(
Falg
p

)n
is irreducible. To prove the claim about the

dimensions elementarily, note that a Groebner basis generated from
f1, . . . , fs will still be over Q. Multiplying by the denominators, the
Groebner basis will be over Z. Reducing mod p, a Groebner basis
stays a Groebner basis as long as none of the leading coefficients
vanish mod p. Now use (3). So logp

∣∣V (Ip) ∩ Fn
p

∣∣ ≈ d by Lang–Weil,
as described above (for all but finitely many prime numbers p).

(5) Putting it all together: Let I be an ideal of Z[T1, . . . , Tn] such that
V (I) ⊂ Cn is irreducible. Combining all of the above, we see that we
can compute the dimension over R of the tangent space to V (I) ⊂ Cn

at any non-singular point by computing the cardinality of V (Ip)∩Fn
p .

The latter can sometimes be done with tools of combinatorics or
analysis. I find this connection between varieties over C and over Fp

very beautiful.
Note that if I is a specific ideal given by an explicit set of generators,
we have described in (3) an algorithm to compute the dimension.
But sometimes we do not completely understand I, but we can still
approximate

∣∣V (Ip) ∩ Fn
p

∣∣. Remember, though, that there is a finite
number of bad primes for which this does not work, and we do not
necessarily know what these primes are.

(6) More generally, if V (I) ⊂ Cn is not known to be irreducible, we
can still study it by approximating

∣∣V (Ip) ∩ Fn
p

∣∣ for various prime
numbers (e.g. in order to prove that V (I) is irreducible). There is a
technique to do that, based on Chebotarev’s density theorem from
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number theory. Chebotarev’s theorem becomes more efficient if one
assumes information about the Dedekind zeta functions of number
fields (e.g. assumes the Generalized Riemann Hypothesis). This
efficiency is useful because it allows us to study V (I) by approximating∣∣V (Ip) ∩ Fn

p

∣∣ only for a relatively small number of relatively small
primes, and this may be easier. J.P. Serre has a beautiful book
about this, titled simply “NX(p)” (in Serre’s notation, X = V (I),
and NX(p) =

∣∣V (Ip) ∩ Fn
p

∣∣).
13.2. Dimension theory of noetherian local rings.

Lemma 13.11. Let (A,m) be a noetherian local ring. Then

(1) An ideal q of A is m-primary ⇔ mt ⊂ q ⊂ m for some t ≥ 1.
(2) For a m-primary ideal q of A, A/q is artinian.

Proof. (i) If mt ⊂ q ⊂ m then
√
mt︸︷︷︸

=m

⊂ √q ⊂
√
m and so

√
q = m and thus q

is m-primary. Conversely, if q is m-primary then
√
q = m and so mt ⊂ q for

some t ≥ 1 (in a noetherian ring, every ideal contains a power of its radical,
see ES2.Q2e), and clearly q ⊂ m.

(ii) First, (A/q,m/q) is a noetherian local ring. If q ⊂ p ⊂ m and p ∈ specA

then
√
q︸︷︷︸

=m

⊂ p and so p = m. Thus m/q is the only prime ideal of A/q, and

so dimA/q = 0. Thus A/q is artinian. □

Fix a noetherian local ring (A,m). Here are three numbers we can extract
from A:

(1) dimA (the Krull dimension of A).
(2) δ(A) = min{δ(q) | q is an m-primary ideal of A},

where δ(q) is the cardinality of the smallest generating set for the
ideal q.

(3) d(Gm(A)) (the order of the pole at T = 1 of the rational function
P (Gm(A), T ) =

∑∞
n=0 ℓ

(
mn/mn+1

)
· Tn).

Our goal here is to prove that all three are equal:

Theorem 13.12 (Dimension theorem). For a noetherian local ring (A,m),
δ(A) = d(Gm(A)) = dimA.

Proof. Combining Propositions 13.18, 13.20, 13.22 below, we have δ(A) ≥
d(Gm(A)) ≥ dimA ≥ δ(A). □

Before proving the three propositions that imply Theorem 13.12, we show
an application. Recall that a minimal prime ideal of an ideal a of a ring R is
a minimal element of {p ∈ specR | a ⊂ p}.
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Corollary 13.13 (Krull’s Height Theorem). Let a = (x1, . . . , xr) be an ideal
of a noetherian ring A. Then ht p ≤ r for every minimal prime ideal p of a.

Remark 13.14. Consider the localization map A→ Ap. If n ∈ specAp contains
aAp then a ⊂ (aAp)

c ⊂ nc ⊂ p, and so nc = p, and thus n = nce = pAp. Thus√
aAp = pAp (the radical of an ideal I is equal to the intersection of the prime

ideals containing I). Thus aAp is pAp-primary since pAp ∈ mspecAp. But
aAp is generated by x1

1 , . . . ,
xr
1 , and thus ht p = dimAp = δ(Ap) ≤ δ(aAp) ≤

r.

Remark 13.15. [ non-examinable ] In Example Sheet 4, you will show
that if A is an integral domain and a finitely generated algebra over a field,
then dimA/p = dimA − ht p (you will also show that this is false in more
general noetherian rings). Thus, in this case we can think of ht p as co-
dimension. Geometrically, this implies that for an algebraic set X defined
by r polynomials on the affine space An

C, every irreducible component of X
is of dimension at least n− r. This generalizes what you know from linear
algebra: A linear subspace defined by r linear equations on kn has dimension
at least n− r.

Lemma 13.16. Let p ∈ Q[T ]. Then
∑n−1

k=0 p(k) = q(n) for all n ≥ 0 for
some q ∈ Q[T ], where the leading term of q depends only on the leading term
of p, and deg q = 1 + deg p (unless p = 0, and then q = 0).

Proof. This follows since
∑n−1

k=0 k
ℓ is a polynomial in n of degree ℓ+1 (exercise).

□

Definition 13.17. Consider a function f : Z≥0 → Z≥0.
(1) If there are g ∈ Q[T ] and n0 ∈ Z such that f(n) = g(n) for all n ≥ n0,

we shall say that f is eventually a polynomial.
(2) If f is eventually a polynomial then g ∈ Q[T ] above is determined

uniquely by f , and so we may define (i) deg f , (ii) the leading coeffi-
cient of f , and (iii) the leading term of f , as those of g (recall, e.g.
that the leading coefficient of 1

2T
3 + 4T is 1

2 , while its leading term is
1
2T

3).

Let (A,m) be a noetherian local ring.
Let q be an m-primary ideal of A. Consider the associated graded rings

Gq(A) = A/q ⊕
⊕

n≥1 q
n/qn+1 and Gm(A) = A/m ⊕

⊕
n≥1m

n/mn+1. By
Lemma 13.11, the rings A/q and A/m are artininian. Furthermore, q is
generated by δ(q) < ∞ elements (since A is noetherian), and so Gq(A) is
generated as an A/q-algebra by δ(q) <∞ homogeneous elements of degree 1

(which are the images in q/q2 of the δ(q) generators of q). Similarly, Gm(A) is
generated as an A/m-algebra by δ(m) <∞ homogeneous elements of degree 1.
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By Proposition 13.9, ℓ
(
qn/qn+1

)
and ℓ

(
mn/mn+1

)
are eventually polynomials

of degrees d(Gq(A))− 1 and d(Gm(A))− 1, respectively. Hence, by Lemma
13.16, ℓ(A/qn)︸ ︷︷ ︸

=
∑n−1

k=0 ℓ(qk+1/qk)

and ℓ(A/mn)︸ ︷︷ ︸
=
∑n−1

k=0 ℓ(mn+1/mn)

are eventually polynomials of

degrees d(Gq(A)) and d(Gm(A)), respectively. In fact, d(Gq(A)) = d(Gm(A))

(see the proof of Proposition 13.18 below).

Proposition 13.18. δ(A) ≥ d(Gm(A)).

Proof. Let q be an m-primary ideal of A. By Lemma 13.11, mt ⊂ q ⊂ m for
some t ≥ 1, and thus ℓ(A/mn) ≤ ℓ(A/qn) ≤ ℓ

(
A/mtn

)
for all n ≥ 0. So51

deg ℓ(A/qn) = deg ℓ(A/mn), and so d(Gq(A)) = d(Gm(A)).
By Theorem 13.7, the Poincare series P (Gq(A), T ) is a rational function

of the form f(T )

(1−T )δ(q)
, and thus d(Gq(A)) ≤ δ(q). Hence d(Gm(A)) ≤ δ(q).

Taking q to be an m-primary ideal of A such that δ(A) = δ(q) completes the
proof. □

Lemma 13.19. If x ∈ m is not a zero divisor then d
(
Gm/(x)(A/(x))

)
≤

d(Gm(A))− 1.

Proof. Consider the noetherian local ring (A/(x),m/(x)). Then

d
(
Gm/(x)(A/(x))

)
= deg ℓ

(A/(x))/ (m/(x))n︸ ︷︷ ︸
=(mn+(x))/(x)

 = deg ℓ(A/(mn + (x))) .

On the other hand,
d(Gm(A)) = deg ℓ(A/mn) .

Thus, we need to prove that deg ℓ(A/(mn + (x))) ≤ deg ℓ(A/mn)− 1.
The short exact sequence

0 −→ (mn + (x))/mn︸ ︷︷ ︸
∼=(x)/(mn∩(x))

−→ A/mn −→ A/(mn + (x)) −→ 0

shows that ℓ(A/(mn + (x))) = ℓ(A/mn) − ℓ((x)/(mn ∩ (x))), and also that
ℓ((x)/(mn ∩ (x))) is eventually a polynomial (since the other two terms
are). Thus it suffices to show that the leading terms of ℓ(A/mn) and
ℓ((x)/(mn ∩ (x))) are the same.

Since x is not a zero divisor, we have an A-linear isomorphism A → (x)

given by a 7→ ax. This map induces an A-linear isomorphism A/mn →
(x)/mn(x) for all n, and thus ℓ(A/mn) = ℓ((x)/mn(x)). Thus, it remains to
show that ℓ((x)/mn(x)) and ℓ((x)/(mn ∩ (x))) have the same leading term.

51If |f(n)| ≤ |g(n)| ≤ |f(tn)| for all n ≥ 1 for polynomials f, g ∈ Q[T ], then deg f(x) ≤
deg g(x) ≤ deg f(tx)︸ ︷︷ ︸

=deg f(x)

.
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Clearly (mn)n≥0 is a stable m-filtration of the noetherian ring A, and so,
by Artin–Rees (Proposition 12.12), (mn ∩ (x))n≥0 is a stable m-filtration of
the submodule (x) of A. Thus, the filtrations (mn ∩ (x))n≥0 and (mn(x))n≥0
of (x) are equivalent by Lemma 12.10. That is, mn+n0 ∩ (x) ⊂ mn(x) and
mn+n0(x) ⊂ mn ∩ (x) for all n ≥ 0 for some n0 ≥ 0. Hence

ℓ
(
(x)/mn−n0 ∩ (x)

)
≤ ℓ((x)/mn(x)) ≤ ℓ

(
(x)/mn+n0 ∩ (x)

)
and thus52 ℓ((x)/mn(x)) and ℓ((x)/mn ∩ (x)) have the same leading term. □

Proposition 13.20. d(Gm(A)) ≥ dimA.

Proof. We prove the claim by induction on d(Gm(A)). If d(Gm(A)) = 0 then
deg ℓ

(
mn/mn+1

)
= −1, and so, for all large enough n, ℓ

(
mn/mn+1

)
= 0, i.e.,

mn+1︸ ︷︷ ︸
=m·mn

= mn, and so mn = 0 by Nakayama’s Lemma. Thus A is an artinian

ring (since A is a noetherian ring where some finite product of maximal ideals
is 0, see Example Sheet), and so dimA = 0.

Assume that d(Gm(A)) > 0. If dimA = 0 we are done. Assume that
dimA ≥ 1. Take a chain p0 ⊊ · · · ⊊ pr, r ≥ 1, of prime ideals of A. It suffices
to show that d(Gm(A)) ≥ r.

Consider the noetherian local integral domain (A/p0,m/p0), and let x ∈
p1 \ p0. Then d

(
Gm/p0(A/p0)

)︸ ︷︷ ︸
=deg ℓ((A/p0)/(m/p0)

n)

≤ d(Gm(A))︸ ︷︷ ︸
=deg ℓ(A/mn)

: Indeed, (A/p0)/(m/p0)n =

(A/p0)/((m
n + p0)/p0) ∼= A/(mn + p0) is isomorphic to a quotient of A/mn,

and thus ℓ((A/p0)/(m/p0)n) ≤ ℓ(A/mn) for all n ≥ 1.
By Lemma 13.19 and since x /∈ p0, we have

d
(
Gm/(p0+(x))(A/(p0 + (x)))

)
≤ d
(
Gm/p0(A/p0)

)︸ ︷︷ ︸
≤d(Gm(A))

−1

and thus the induction hypothesis implies that

d
(
Gm/(p0+(x))(A/(p0 + (x)))

)
≥ dimA/(p0 + (x)) ,

and so together we have

d(Gm(A)) ≥ dimA/(p0 + (x)) + 1

and thus it suffices to show that

dimA/(p0 + (x)) ≥ r − 1 .

This indeed the case because the images of p1 ⊊ · · · ⊊ pr in A/

p0 + (x)︸ ︷︷ ︸
⊂p1


form a strictly ascending chain of prime ideals. □

52If f(n− n0) ≤ g(n) ≤ f(n+ n0) for all large enough n for polynomials f, g ∈ Q[T ]

and some n0 ≥ 0, then f and g have the same leading term.
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Remark 13.21. [ non-examinable ] The proof considered the ringA/(p0 + (x)).
The geometric intuition (I am only assuming familiarity with algebraic sets)
is that if A = C[T1, . . . , Tn]/I corresponds to an algebraic set X = V (I),
then A/p0 corresponds to an irreducible component Y of X (if p0 is min-
imal), and A/(p0 + (x)) corresponds to the intersection of the irreducible
component with the hypersurface defined by the equation p(T1, . . . , Tn) = 0,
where x = p+ I. We expect the dimension of an irreducible algebraic set Y
to decrease after intersecting Y with a hypersurface that does not contain Y .
Using Lemma 13.19, we see that this property indeed holds if we think of
d(Gm(·)) as a measure of dimension. This enables us to reason by induction,
and eventually to conclude that d(Gm(A)) really is the Krull dimension of
a noetherian local ring (A,m), once the proof of the Dimension Theorem is
complete.

Proposition 13.22. dimA ≥ δ(A) (i.e., there is a an m-primary ideal q
generated by dimA elements).

Proof. Write d = dimA. Then htm = d, and every m ̸= p ∈ specA satisfies
ht p < d. Thus, it is enough to construct an ideal q = (x1, . . . , xd) ⊂ m of A
such that ht q ≥ d because then ht p ≥ d for every q ⊂ p ∈ specA, and so
p = m, and thus

√
q =

⋂
q⊂p∈specA = m, and hence q is m-primary.

We construct x1, . . . , xd ∈ m inductively such that ht (x1, . . . , xi)︸ ︷︷ ︸
=:qi

≥ i for

all i. The base case q0 = (0) satisfies ht q0 ≥ 0 (since q0 is contained in a
minimal prime ideal of A, which must have height 0).

Take qi−1 = (x1, . . . , xi−1), i− 1 < d, such that ht qi−1 ≥ i− 1. There are
only finitely many prime ideals p1, . . . , pt of A of height i− 1 that contain
qi−1 because:

(1) each pi is a minimal prime ideal of qi−1 since ht qi−1 ≥ i− 1, and
(2) qi−1 has only finitely many minimal prime ideals since A is noetherian

(see ES2.Q2c).

Now, i− 1 < d = htm, and so m ⊈ pj for all j, and so m ⊈
⋃t

j=1 pj by Prime
Avoidance (ES1.Q5a). Take xi to be any element of m \

⋃t
j=1 pj , and let

qi = (x1, . . . , xi). Then every p ∈ specA such that qi ⊂ p satisfies qi−1 ⊂ p

and p /∈ {p1, . . . , pt} (since xi ∈ p). Thus ht p ≥ i. Hence ht qi ≥ i. □

Remark 13.23. The proof of the Dimension Theorem 13.12 is now complete.
Thus, so is the proof of Krull’s Height Theorem (Corollary 13.13). Therefore,
each of the ideals qi in the proof of Proposition 13.22 satisfies ht qi ≤ i since
qi is generated by i elements, and thus, in fact, ht qi = i.
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14. Dedekind domains and discrete valuation rings

Definition 14.1.
(1) A discrete valuation v on a field K is a surjective group homomor-

phism53 v : K× → Z such that v(x+ y) ≥ min{v(x), v(y)}. Write
v(0) =∞.

(2) The valuation ring of v is the ring {x ∈ K | v(x) ≥ 0}.
(3) An integral domain A is a discrete valuation ring (DVR) if A is the

valuation ring of some discrete valuation v on FracA.
If v : K× → Z is a discrete valuation on a field K then v(1) = v(1 · 1) = 2v(1)

and so v(1) = 0. Thus 0 = v(1) = v((−1)(−1)) = 2v(−1) and so v(−1) = 0.
Hence, for all x ∈ K×, we have v(−x) = v((−1)x) = v(−1) + v(x) = v(x).

Example 14.2.
(1) Take K = Q and a prime number p. Every x ∈ Q can be written as

x = pn a
b for integers n, a, b, where a and b are not divisible by p. Let

vp(x) = n. Then vp is a discrete valuation on Q. The valuation ring
of vp is

{x ∈ Q | vp(x) ≥ 0} =
{a
b
| a, b ∈ Z, p ∤ b

}
= Z(p) ,

i.e. the localization of Z at the prime ideal (p).
(2) Let K = k(T ), the field of rational function over k, and an irreducible

polynomial f ∈ k[T ]. Then, similarly to the previous example, we
have a discrete valuation vf with valuation ring k[T ](f).

Fact 14.3. Let v : K× → Z be a discrete valuation, and A = {x ∈ K | v(x) ≥ 0}
the valuation ring of v (necessarily A is a DVR). Then:

(1) An element x ∈ A belongs to A× if and only if v(x) = 0.
Proof: If x = 0 then v(x) =∞ ̸= 0. Now, take x ̸= 0. Then x ∈ A×
⇔ x−1 ∈ A ⇔ v

(
x−1

)︸ ︷︷ ︸
=−v(x)

≥ 0 ⇔ v(x) ≤ 0 ⇔ v(x) = 0.

(2) A is a domain.
Proof: A is a subring of the field K.

(3) Take any π ∈ A with v(π) = 1. Then the nonzero ideals of A are
precisely

(
π0
)︸︷︷︸

=A

⊋
(
π1
)
⊋
(
π2
)
⊋ · · · , and so (A, (π)) is a noetherian

local domain.
Proof: Let a ̸= 0 be an ideal of A. Let k = min{v(x) | x ∈ a}. Then
k < ∞ since a ̸= 0. For x ∈ a, we have v

(
xπ−k

)
= v(x) − k ≥ 0,

and so xπ−k ∈ A, and thus x = xπ−k · πk ∈
(
πk
)
. So a ⊂

(
πk
)
. On

53i.e. v(ab) = v(a) + v(b) for all a, b ∈ K×.
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the other hand, for x0 ∈ a such that v(x0) = k, we have v
(
πkx−10

)
=

k − k = 0, and so πk = πkx−10 · x0 ∈ a. Thus
(
πk
)
⊂ a. So a =

(
πk
)
.

Finally, the inclusions are strict since (πn) = {x ∈ A | v(x) ≥ n}
(check!). This also shows that v is determined uniquely by A (explain!).

(4) specA = {(0), (π)}, and so dimA = 1.
Proof: (0) is prime and (π) is maximal by the points above. For
k ≥ 2, the ideal

(
πk
)

of A is not prime because, e.g., πk ∈
(
πk
)
, while

π /∈
(
πk
)
.

We have shown, in particular, that:

Lemma 14.4. Every DVR is a noetherian local domain of dimension 1.

Note that a ring A is a local domain of dimension 1 if and only if specA =

{(0),m} for some m ≠ (0) (necessarily maximal). Indeed, “domain” means
that (0) is prime, “local” means that there is exactly one maximal ideal m,
and “dimension 1” means that m ̸= (0) and that there are no prime ideals
between (0) and m. If we assume further that A is noetherian, then the chain
m0 ⊃ m1 ⊃ m2 ⊃ · · · is strictly desceding. Indeed, if mn+1 = mn for some n,
then mn = 0 by Nakayama’s lemma, and thus the notherian ring A is artinian
(as in the example sheet), and so dimA = 0, a contradiction.

Among noetherian local domains of dimension 1, DVRs are characterized
in several equivalent ways:

Proposition 14.5. [ Only (1)⇒ (2)⇒ (3) fully covered in the lecture.
For the rest, see ES4. ] Let (A,m) be a noetherian local domain of
dimension 1. Then, the following conditions are equivalent:

(1) A is a DVR.
(2) A is integrally closed.
(3) m is a principal54 ideal.
(4) Every nonzero ideal of A is a power of m.
(5) There is55 π ∈ A such that every nonzero ideal of A is equal to (πn)

for some n ≥ 0.

Proof. (1) ⇒ (2): Assume that A is a DVR. Then A is the valuation ring
for some discrete valuation v : FracA→ Z. Take x ∈ FracA integral over A.

54Any generator of m is called a uniformizer , or uniformizing parameter .
55Thus π is a uniformizer.
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Then xn + a1x
n−1 + · · ·+ anx

0 = 0, n ≥ 1, ai ∈ A. Thus

v(xn)︸ ︷︷ ︸
nv(x)

= v
(
a1x

n−1 + · · ·+ anx
0
)

≥ min
1≤i≤n

v(ai)︸ ︷︷ ︸
≥0

+(n− i)v(x)

 .

So nv(x) ≥ (n− i0)v(x) for some 1 ≤ i0 ≤ n, and thus i0v(x) ≥ 0 and so
v(x) ≥ 0 and thus x ∈ A.

(2) ⇒ (3): Assume that A is integrally closed. We want to find x ∈ A
such that m = Ax. It suffices to find x ∈ FracA such that m = Ax because
this implies that m ∋ 1 · x and so x ∈ A. Equivalently, we are looking for
x ∈ FracA such that x−1m = A. It suffices to require (I) x−1m ⊂ A and (II)
x−1m ⊈ m because (I) ensures that x−1m is an ideal of A (check!), and (II)
ensures x−1m is not contained in the unique maximal ideal of A.

Write x = a
b for nonzero a, b ∈ A. To ensure (I), we need b

am ⊂ A, i.e. (I’)
bm ⊂ Aa. To ensure (II), it suffices to ask for x−1 not to be integral over
A (because then, if x−1m ⊂ m, then m would be a faithful A

[
x−1

]
-module,

finitely generated over A since A is noetherian, contradicting Lemma 6.4).
Since A is integrally closed, this is the same as requiring x−1︸︷︷︸

=b/a

/∈ A, i.e. (II’)

b /∈ Aa.
We are left with choosing a and b to ensure (I’) and (II’). Take any

0 ̸= a ∈ m. Then
√
Aa = m since specA = {(0),m}. Thus mt ⊂ Aa for some

t (in a noetherian ring, every ideal contains a power of its radical). Take t
to be minimal, i.e. mt−1 ⊈ Aa. Choose any b ∈ mt−1 \Aa, clearly ensuring
(II’). Then bm ⊂ mt ⊂ Aa, and so (I’) holds as well.

(3) ⇒ (4): Let a be a nonzero proper ideal of A. Then
√
a = m since

specA = {(0),m}. Thus, mℓ ⊂ a for some ℓ ≥ 1, and so mℓ+1 ⊊ a, and in
particular a ⊈ mℓ+1. Thus, since a ⊂ m1, there is t ≥ 1 such that a ⊂ mt but
a ⊈ mt+1. Assume that m is principal, i.e. m = (π), π ∈ A. Take y ∈ a\mt+1.
Then y = aπt for some a ∈ A, but y /∈ mt+1, and so a /∈ m, and thus a ∈ A×.
Thus πt ∈ a, and so

(
πt
)
⊂ a ⊂

(
πt
)
, i.e. a = mt.

(4) ⇒ (5): We have m ̸= m2. Take π ∈ m \m2. Then (π) = mr for some
r ≥ 1 by hypothesis, and so r = 1 since π /∈ m2, i.e. (π) = m. So, every
nonzero ideal of A is of the form mr = (xr), r ≥ 0.

(5) ⇒ (1): Assume (5). The chain ((πn))n≥0 is strictly decreasing: If(
πn+1

)︸ ︷︷ ︸
=π(πn)

= (πn), then
(
πn+i

)
= (πn) for all i ≥ 0 and so A has finitely many

ideals, in contradiction with our previous discussion. Thus, for 0 ̸= a ∈ A,
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(a) =
(
πv(a)

)
for exactly one integer v(a) ≥ 0. For a

b ∈ Frac(A)×, we let
v
(
a
b

)
= v(a)− v(b). It is left to the reader (see Example Sheet 4) to check

that v is a discrete valuation, and that A is its valuation ring. □

Exercise 14.6. Let A be a noetherian local domain of dimension 1. Prove
that A is a DVR if and only if dimk m/m

2 = 1, where k = A/m.

We have characterized DVRs among noetherian local domains of dimension
1. Their global counterpart to DVRs are Dedekind domains, which are a
special kind of noetherian domains of dimension 1.

First, note that a ring A is an integral domain of dimension 1 if and only
if (0) ∈ specA and every nonzero prime ideal of A is maximal.

Definition 14.7 (Dedekind domain). Let A be a noetherian domain of
dimension 1. Then A is a Dedekind domain if it satisfies one (hence all) of
the following equivalent conditions:

(1) A is integrally closed.
(2) Ap is a DVR for each 0 ̸= p ∈ specA (i.e. for each p ∈ mspecA).

Proof of equivalence. First, note that for each m ∈ mspecA, Am is a noether-
ian local domain of dimension dimAm = htm = 1. By Proposition 14.5, Am

is a DVR if and only if Am is integrally closed. Hence, equivalence follows
from ES3.Q7, which says that a domain A is integrally closed if and only if
Am is integrally closed for all m ∈ mspecA. □

Before we continue, we need the following fact:

Fact 14.8. [ Not covered in the lecture, see ES4 ] Consider the local-
ization map R→ S−1R for a multiplicative subset S of R. Take p ∈ specR

such that p∩S = ∅, and let q be a p-primary ideal of R. Then q is contracted
from S−1R.

Proof. By Proposition, we need to show that the image S of S in R/q does
not contain zero divisors. Since q is primary, this is the same as showing that
S does not contain nilpotent elements. If it did contain a nilpotent element
s+ q, s ∈ S, i.e. sn + q = 0 for some n ≥ 1, then s ∈ √q = p, contradicting
the assumption p ∩ S = ∅. □

Proposition 14.9. [ Not covered in the lecture, see ES4 ] Let A be a
Dedekind domain and (0) ̸= p ∈ specA. Then the set of p-primary ideals of
A is {pn}n≥1, and (pn)n≥1 is a strictly descending sequence.

Proof. On one hand,
√
pn =

√
p = p, a maximal ideal, and so pn is p-primary.

Conversely, let q be a p-primary ideal of A. Then qAp is a nonzero proper
ideal of the DVR Ap, and thus qAp = (pAp)

n = pnAp for some n ≥ 1 by
Proposition 14.5(4). By Fact 14.8, q = (qAp)

c and pn = (pnAp)
c, and thus
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q = pn. As for the last assertion, if pn+1 = pn, n ≥ 0, then pn+1Ap = pnAp,
and thus pnAp︸ ︷︷ ︸

=(pAp)
n

= (0) by Nakayama’s Lemma, and so pAp = 0 since Ap is a

domain, and thus p = (0), a contradiction. □

Let a ̸= (0) be an ideal of a Dedekind domain A. Then a has a minimal
primary decomposition since A is noetherian. In light of Proposition 14.9,
this can be written as a = pe11 ∩ · · · ∩ penn , where p1, . . . , pn are all nonzero
since a ̸= (0). The associated prime ideals p1, . . . , pn are in mspecA, and
thus there are no inclusions among them. So p1, . . . , pn are the isolated prime
ideals of a, and pe11 , . . . , p

en
n are the isolated primary components of a. So

p1, . . . , pn and pe11 , . . . , p
en
n are uniquely determined by a. Hence, e1, . . . , en

are also uniquely determined by a by the last assertion of Proposition 14.9.

Proposition 14.10. Let A be a Dedekind domain, and a ≠ 0 an ideal of
A. Then a = pe11 · · · penn , where p1, . . . , pn ∈ (specA) \ {(0)} are distinct and
ei ≥ 1. Furthermore, p1, . . . , pn and e1, . . . , en are uniquely determined (up
to reordering).

Proof. Consider distinct p1, . . . , pn ∈ (specA) \ {(0)}, and e1, . . . , en, ei ≥ 1.
Then p1, . . . , pn are pairwise co-prime since they are distinct and maximal.
Thus pe11 , . . . , p

en
n are pairwise co-prime by ES3.Q6b. Thus pe11 ∩ · · · ∩ penn =

pe11 · · · penn by the Chinese Remainder Theorem56 (ES1.Q4). Thus the existence
and uniqueness follow from the discussion above. □

Remark 14.11. [ Not covered in the lecture, see ES4 ] For a factorization
a = pe11 · · · penn as in Proposition 14.10, we have aRpi = (p1Rpi)

e1 · · · (pnRpi)
en =

(piRpi)
ei (explain using Proposition 4.16(3) !). Now, Rpi is a DVR, with a uni-

formizer πi ∈ Rpi , piRpi = (πi), and a discrete valuation vi : Frac(Rpi)→ Z.
So vi(aRpi) = ei.

Proposition 14.12. Let K be a number field57. Let OK be the ring of
integers of K (i.e., the integral closure of Z in K). Then OK is a Dedekind
domain.

Proof. Clearly, OK is a domain since it is a subring of the field OK . We
have OK ⊂ FracOK ⊂ K (in fact58 FracOK = K). By Lemma 6.12, OK is
integrally closed in K, and thus also in FracOK . Now, Z ⊂ OK is an integral
extension, and thus dimOK = dimZ = 1.

56The Chinese Remainder Theorem, as stated in the example sheet, gives us that the
kernel of the natural map A → A/pe11 ×· · ·×A/penn is pe11 · · · penn , but this kernel is evidently
also equal to pe11 ∩ · · · ∩ penn .

57A number field K is a finite extension of Q, i.e. [K : Q] < ∞.
58We only need the trivial inclusion FracOK ⊂ K, but it feels silly not to mention that

this is an equality becuase this is such a basic fact. Proof: If x ∈ K then x is algebraic over
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We have shown that OK is an integrally closed domain of dimension 1. It
remains to show that OK is a noetherian ring, i.e. a noetherian OK-module.
In fact, OK

∼= Z[K:Q] as Z-modules, and thus OK is a noetherian Z-module,
a fortiori a noetherian OK-module (explain!). We record this fact in the next
proposition. □

Proposition 14.13. [ non-exmainble ] The ring of integers of a number
field K is isomorphic is a free Z-module of rank [K : Q].

Proof. See any text on algebraic number theory (or Atiyah–Macdonald). □

Remark 14.14. [ non-examinable ] More generally, for an extension A ⊂
FracA ⊂ K, where A is a Dedekind domain andK/FracA is a finite separable
field extension, the integral closure A of A in L is a Dedekind domain. The
proof is similar to the one above, except for the fact that A does not have to
be a free A-module (but in general A an A-submodule of a free A-module
of rank [K : FracA], and hence A is a noethrian A-module, and hence A
is a noetherian A-module, i.e. a noetherian ring). If A is a PID then
A ∼= A[K:FracA] as A-modules, like in the case Z︸︷︷︸

=A

⊂ Q︸︷︷︸
=FracA

⊂ K discussed

above.

Q since [K : Q] < ∞, and so a0x
n + · · ·+ anx

0 = 0 for some a0︸︷︷︸
̸=0

, . . . , an ∈ Z (explain!).

Multiplying both sides by an−1
0 , we see that a0x is integral over Z, i.e. a0x ∈ OK . Thus

x = a0x
a0

∈ FracOK (as a0 ∈ Z ⊂ OK).
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15. Example Sheets

Example Sheet 1. In all exercises, k is a field and R is a ring (commutative
and unital).

(1)
(a) Let I be a finitely generated ideal of R, and let S be a generating

subset of I. Prove that there is a finite subset S0 of S that
generates I.

(b) Let f ∈ k[T1, . . . , Tn] be a nonzero homogeneous polynomial.
Prove that f(T1, . . . , Tn−1, 1) is a nonzero polynomial. Show
that the assumption that f is homogeneous cannot be dropped.

(c) Let 0 ̸= f ∈ k[T1, . . . , Tn], d = deg f .
(i) For S ⊂ k, prove that {(s1, . . . , sn) ∈ Sn | f(s1, . . . , sn) = 0}

has at most d|S|n−1 elements [ Hint: Induct on n ].

(ii) Deduce that if k is infinite then there is (x1, . . . , xn) ∈ kn
such that f(x1, . . . , xn) ̸= 0. Show that the assumption
that k is infinite cannot be dropped.

(2) Let M,N be modules over a ring R. Prove59:
(a) Commutativity: M ⊗N ∼−→ N ⊗M as R-modules via a map

sending m⊗ n 7→ n⊗m.

(b) Associativity: (M ⊗N)⊗P ∼−→M⊗(N ⊗ P ) ∼−→M⊗N⊗P
as R-modules via maps sending (m⊗ n)⊗ p 7→ m⊗ (n⊗ p) 7→
m⊗ n⊗ p (where the rightmost term is defined using R-trilinear
maps in the natural way).

(c) Distributivity: (
⊕

iMi) ⊗ P
∼−→
⊕

i(Mi ⊗ P ) as R-modules
via a map sending (mi)i ⊗ p 7→ (mi ⊗ p)i.

(d) Identity element: R ⊗M ∼−→ M as R-modules via a map
sending r ⊗m 7→ rm.

(e) Quotients: For submodules M ′ ⊂ M , N ′ ⊂ N , let L be the
R-submodule of M ⊗N generated by{

m′ ⊗ n |
(
m′, n

)
∈M ′ ×N

}
∪
{
m⊗ n′ |

(
m,n′

)
∈M ×N ′

}
.

59I like proving such claims by producing homomorphisms in both directions using
universal properties, and then showing that they are two-sided inverses. Another, similar,
approach is to use the uniqueness of the tensor product w.r.t. the universal property.



COMMUTATIVE ALGEBRA 116

Prove that (M/M ′)⊗ (N/N ′)
∼−→ (M ⊗N)/L via a map send-

ing (m+M ′)⊗ (n+N ′) 7→ m⊗ n+ L.

(f) Deduce that (R/I)⊗M ∼−→M/IM via a map sending (r + I)⊗
m 7→ rm+ IM .

(3) Let φ : A→ B be a ring homomorphism. The contraction of an ideal
b of B is the ideal bc := φ−1(b) of A. The extension of an ideal a of
A is the ideal ae := (φ(a)) of B (i.e., the ideal of B generated by the
image of a under φ).
(a) Show that bc is an ideal of A, but φ(a) is not necessarily an ideal

of B (although ae clearly is).

(b) Let a1, a2 be ideals of A, and b1, b2 ideals of B. Prove:

(a1 + a2)
e = ae1 + ae2 (a1a2)

e = ae1a
e
2

(b1 ∩ b2)
c = bc1 ∩ bc2

√
b
c
=
√
bc

(here
√
I is the radical of an ideal I of a ring R, i.e.

√
I =

{x ∈ R | ∃n ≥ 1 xn ∈ I}).
[ Recall that the sum and intersection of two ideals as sets are
ideals, but the product {xy | x ∈ I, y ∈ J} of two ideals I and
J as sets is usually not an ideal. When we write IJ , we are
referring to the ideal generated by this product set. ]

(c) Prove that a ⊂ aec and b ⊃ bce. Then prove that bc = bcec and
ae = aece.

(d) Ideals of A of the the form bc are called contracted ideals. Ideals
of B of the form ae are called extended ideals. Prove that an
ideal a of A is contracted if and only if aec = a, and an ideal of
b is extended if and only if bce = b. Then prove that we have a
bijection

{ contracted ideals of A } ↔ { extended ideals of B }

given by a 7→ ae and bc ←[ b.

(e) Give an example of a ring homomorphism φ : A→ B, an ideal of
A that is not contracted, and an ideal of B that is not extended.
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(4) Chinese remainder theorem: Let a1, . . . , an be ideals of a ring A
such that ai and aj are coprime for all i ̸= j (i.e., ai+ aj = A). Prove
that the map x 7→ (x+ a1, . . . , x+ an) : A → A/a1 × . . . × A/an is
surjective with kernel a1 . . . an.

(5) Let I1, . . . , Ir, a, r ≥ 1, be ideals of a ring A, such that a ⊈ Ii for all
1 ≤ i ≤ r. Prove:
(a) Prime avoidance: If |{1 ≤ i ≤ r | Ii is not prime}| ≤ 2 then

a ⊈
⋃r

i=1 Ii.

(b) If A contains an infinite field then a ⊈
⋃r

i=1 Ii.

(c) It is possible that a ⊂
⋃r

i=1 Ii (give an example).

(6) Let I be an ideal of a noetherian ring R. Prove that there is n ≥ 1

such that
(√

I
)n
⊂ I.

(7) Unboundedly many generators: Consider the ideal an =
(
XnY 0, Xn−1Y 1, . . . , X0Y n

)
of the polynomial ring k[X,Y ], k a field. Prove that any generating
set for an has at least n+ 1 elements (Hint: Consider the image of
an in k[X,Y ]/an+1).

(8) Is every subalgebra of a noetherian k-algebra itself noetherian? Show
that the subalgebra k

[{
T1T

i
2

}∞
0=1

]
of k[T1, T2] is not noetherian.

(9) Let R be a nonzero ring. Prove that if there is a surjective R-module
homomorphism Rn → Rℓ then n ≥ ℓ. Deduce that if Rn ∼= Rℓ as
R-modules then n = ℓ. Aside: It’s also true that if there is an
injective R-module homomorphism Rn → Rℓ then n ≤ ℓ.

(10) Let V and W be finite-dimensional vector spaces over a field k.
(a) Prove that there is a k-linear isomorphism V ∗⊗

k
W

∼−→ Homk(V,W )

sending φ⊗ w → (v 7→ φ(v)w).
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(b) Show that there is a k-linear map V ∗ ⊗ V → k sending φ⊗ v 7→
φ(v), which corresponds, under the isomorphism in (c), to the
usual trace60 map Homk(V, V )→ k.

(c) The rank rank t of a tensor t ∈M ⊗RN (M,N some R-modules)
is the least number pure tensors that sum up to t. Let α ∈ V ∗⊗

F
W .

Describe61 rankα in terms on the linear transformation corre-
sponding to α (under the isomorphism in (c)). Then, compute
max

β∈V⊗
k
W

rankβ.

(d) Use the basis-free definition of the trace to prove the formula62

trAB = trBA for matrices A ∈Ma×b(k), B ∈Mb×a(k).

(e) Let f : M ⊗R N → L be an R-module homomorphism. Prove
that f injective on pure tensors (i.e. maps different pure tensors
to different elements of L) if and only if every nonzero element
of ker f has tensor rank at least 3.

(f) Let V be a 2-dimensional vector space over a field k, and let
f : V ⊗k V →W be a k-linear map, injective on the pure tensors
(W some k-vector space). Prove that f is injective.

(g) Give an example of k-vector spaces V,W and a k-linear map
f : V ⊗kV →W that is injective on pure tensors but not injective.

(11)

60This construction gives us a definition of the trace of an operator that does not require
choosing a basis.

61Once you solve this problem you’ll have an efficient algorithm to compute the tensor
rank in a tensor product of two finite dimensional vector spaces. But note that computing
the tensor rank in a tensor product U ⊗ V ⊗W of three vector spaces is NP-complete (so
if P ̸= NP as widely conjectured, then there is no polynomial time algorithm to compute
the tensor rank in U ⊗ V ⊗W ).

62In undergraduate courses this formula is often proved directly, and is then used
to show that tr is invariant under a change of basis. But with the basis-free approach,
we automatically deduce invariance. Also, there’s a basis-free approach to defining the
determinant through a construction called the exterior power, which is analogous to the
tensor power V ⊗n, but with a universal property for alternating multilinear maps rather
than all multilinear maps.
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(a) Let B = A[T ]/(f), A a ring, f a monic polynomial. Prove that
the A-algebra B is a flat A-module.

(b) Prove that the A-algebra B := k[X,Y ]/(XY ) is not a flat k[X]-
module. Hint: Consider the embedding (X)→ k[X].

(12) Let C be a class of R-modules (e.g. all finitely generated R-modules)
and let λ be a function on C with values in Z, such that λ(M) = λ(M ′)

whenever M ∼=M ′ as R-modules. Assume that λ is additive, i.e. for
every short exact sequence 0 → M ′ → M → M ′′ → 0 we have
λ(M) = λ(M ′) + λ(M ′′). Consider an exact sequence of R-modules

0→M0 →M1 → · · · →Mn → 0

(where the Mi and all kernels and images belongs to C). Prove that
n∑

i=0

(−1)iλ(Mi) = 0 .

(13) Let f : R→ S be a ring homomorphism. Let M be an S-module and
N an R-module. Prove that

M ⊗R N ∼=M ⊗S (S ⊗R N)

as S-modules by isomorphisms sending m ⊗ n 7→ m ⊗ (1⊗ n) and
(sm)⊗ n←[ m⊗ (s⊗ n) [ the proof appears in the notes ]

(14) Let R be an integral domain, and V a FracR-module. Let M ̸= 0 be
an R-submodule of FracR. Prove that M ⊗R V ∼= V as R-modules
by an isomorphism sending m⊗ v 7→ mv.

(15)
(a) Let k be a field, and take matrices A ∈Mm(k) and B ∈Mn(k),

that have eigenvalues λ ∈ k and µ ∈ k, respectively. Prove that
A⊗B has eigenvalue λµ and A⊗In+Im⊗B has eigenvalue λ+µ.

(b) Given algebraic integers a, b ∈ C (this means that each of a
and b is a root of a monic polynomial with coefficients in Z),
deduce that a + b and ab are algebraic integers, and describe
an algorithm that take monic polynomials f, g ∈ Z[T ] such that
f(a) = g(b) = 0 and produces monic polynomials p, q ∈ Z[T ]
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such that p(a+ b) = q(ab) = 0. Deduce also that the set of
algebraic integers in C forms a ring.

(16)
(a) Prove that M ⊗R M ′ is flat whenever M and M ′ are flat R-

modules [ Note: This implies, by induction, that M1⊗ · · ·⊗Mk

is flat whenever M1, . . . ,Mk are all flat ].

(b) For injective R-linear maps f : M →M ′ and g : N → N ′ prove
that if either M,N ′ are both flat, or M ′, N are both flat, then
f ⊗ g is injective.

(c) Prove that if f1 : M1 → N1, . . . , fk : Mk → Nk are injective
R-linear maps, where M1, . . . ,Mk, N1, . . . , Nk are all flat, then
f1⊗· · ·⊗fk is injective. Deduce that if f : M → N is an injective
R-linear map between flat modules then f⊗k is injective for all
k ≥ 1.

(17) We say that a short exact sequence of R-module

0 −→ A
f−→ B

g−→ C −→ 0

splits if it isomorphic to the short exact sequence

0 −→ A
ιA−→ A⊕ C πC−→ C −→ 0

where ιA is the canonical embedding and πC is the canonical projec-
tion.
Prove the splitting lemma, which says that the following are equiva-
lent:
(a) The sequence splits.
(b) There is an R-linear map s : C → B such that g ◦ s = idC .
(c) There is an R-linear map r : B → A such that r ◦ f = idA.

(18) Find a short exact sequence 0→ A→ B → C → 0 of R-module that
does not split although B ∼= A⊕ C as R-modules.

(19) Let M ̸= 0 be a finitely generated R-module. Prove that M⊗k ̸= 0

for all k ≥ 1. [ Hint 1: Let x be an element of a minimal generating
set for M . Prove that x⊗ · · ·⊗x ̸= 0 in M⊗k. Hint 2: To show that
x⊗ · · · ⊗ x ≠ 0, use the universal property of M⊗k for k-multilinear
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maps to produce an R-linear map φ from M⊗k to some R-module
such that φ(x⊗ · · · ⊗ x) ̸= 0. ]
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Example Sheet 2. In all exercises, k is a field and R is a ring (commutative
and unital).

(1) Let M be an R-module. A chain of submodules of M is a finite
sequence (Mi)

n
i=1 of submodules of M such that

M0︸︷︷︸
=M

⊋M1 ⊋ · · · ⊋ Mn︸︷︷︸
=0

.

The length of the chain is n. A composition series of M is a maximal
chain of submodules of M (i.e. there are no R-submodules strictly
between Mi+1 and Mi, i.e. Mi/Mi+1 is a simple module by the
bijective correspondence between R-submodules of Mi/Mi+1 and the
R-submodules of Mi that contain Mi+1).
(a) Assume that M has a composition series of length n. Prove that

every composition series of M has length n, and that every chain
of submodules of M can be extended to a composition series. [
Hint 1: Write ℓ(K) for the length of the shortest composition
series of K. Prove that ℓ(N) < ℓ(M) for every proper submodule
N of M . Hint 2: Deduce that ℓ(M) is the common length of
all composition series of M , and ℓ(M) is also an upper bound
on the length of all chains of submodules of M . Hint 3: Now,
finish the proof. ]

(b) For an R-module M , write ℓ(M) for the common length of all
composition series of M (ℓ(M) = ∞ if M has no composition
series). Prove that ℓ(M) <∞ if and only if M is both noetherian
and artinian.

(c) Prove that ℓ(·) is additive (in the sense of Question 12 in Exam-
ple Sheet 1) on the class of R-modules of finite length.

(d) Let V be a k-vector space. Prove that the following are equiva-
lent:

(i) dimk V <∞.
(ii) ℓ(V ) <∞.
(iii) V is noetherian.
(iv) V is artinian.

(e) Assume that there are maximal ideals m1, . . . ,mn of R (not
necessarily distinct) such that m1 · · ·mn = 0. Prove that R is
noetherian if and only if R is artinian. [ Hint: Construct a
finite chain of ideals of R, descending from R to 0, such that
for consecutive ideal I ⊃ J in the chain, the natural R module
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structure R → End(I/J) on I/J factors as the composition of
ring homomorphisms R→ k → End(I/J), where k is a certain
field, and R→ k is surjective. ]

(2)
(a) Let a1, . . . , an, p be ideals of R, where p is prime. Prove that

if
⋂

i ai ⊂ p then ai ⊂ p for some i, and that if
⋂

i ai = p then
ai = p for some i.

(b) Let I be a radical ideal of R (i.e.
√
I = I). Prove that if x, y ∈ R

and xy ∈ I then I =
√
I + (x) ∩

√
I + (y).

(c) For an ideal I of R, a minimal prime ideal over I is a prime ideal
p of R such that I ⊂ p and if I ⊂ q ⊂ p for some prime ideal q
of R, then q = p (a minimal prime ideal of R is a minimal prime
ideal over (0), or, equivalently, a minimal prime ideal over

√
(0)

since every prime ideal of R contains
√
(0)).

Prove that a radical ideal in a noetherian ring has only finitely
many minimal prime ideals [ Hint: First prove that such an
ideal is equal to the intersection of finitely many prime ideals.
Prove this by contradiction, where noetherianity is used to take
a maximal counter-example (explain!) ]

(d) Let I be a radical ideal in a noetherian ring. If you solved (c)
according to the hint, you already know that I is the intersection
of finitely many prime ideals. If not (but preferrably, even if you
did), deduce this from (c) using a claim from the lectures.

(e) Prove that every ideal in a noetherian ring contains a power
of its radical, and deduce that nilR is a nilpotent ideal (i.e.
(nilR)ℓ = 0 for some ℓ ≥ 1, where in general Iℓ is the ideal
generated by products of the form x1 · · ·xℓ, xi ∈ I) when R is
noetherian.

(3)
(a) Let R be an artinian ring. Prove:

(i) Every prime ideal of R is maximal. [ Hint: R/p is an
artinian integral domain. Is it a field? ]
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(ii) nilR = J(R) (deduce from (i)). Here J(R) is the Jacob-
son radical of R, which defined as the intersection of all
maximal ideals of R.

(iii) R has finitely many prime (equivalently, maximal) ideals.
[ Hint: Find a finite intersection of maximal ideals of R,
contained in all other finite intersections of maximal ideals
of R. ]

(iv) nilR is a nilpotent ideal. [ Hint:
(
(nilR)ℓ

)
ℓ≥1

stabilizes

in some finite step at an ideal a (why?) and you need to
prove that a = 0. Assume not. Prove that there is an
ideal c of R, minimal with respect to the property ac ̸= 0.
Prove that c is principal, i.e. c = (x), x ∈ R. Prove that
xa = (x), and deduce that x = xy for some y ∈ nilR.
Derive a contradiction. ]

(b) Prove that a nonzero ring R is artinian if and only if R is noe-
therian and dimR = 0 (Here dimR refers to the Krull dimension
of the ring R. By definition, dimR is n for the longest chain of
prime ideals p0 ⊊ p2 ⊊ · · · ⊊ pn. So dimR = 0 if and only if
R ̸= 0 and every prime ideal of R is maximal. Note that the zero
ring {0} is the only ring with no prime ideals. By convention,
dim{0} = −∞ or dim{0} = −1).
[ Hint: In both directions, use 1(e). Many of the other claims
in Q1, Q2, Q3 above are useful. ]

(4)
(a) The prime ideal principle: Let F be a set of proper ideals of a

ring R such that for every ideal I of R and x ∈ R, if I +(x) /∈ F
and (I : x) /∈ F then I /∈ F . Let J be a maximal element of F
(i.e. J ∈ F is not contained in any other element of F). Prove
that J is a prime ideal.

(b) Let I be an ideal of R, and let x ∈ R. Prove that if I +(x) = (a)

and (I : x) = (b), a, b ∈ R, then I = (ab).

(c) Prove that if every prime ideal of an integral domainR is principal
then R is a PID.
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(5) Let S ⊂ R be a multiplicative subset and take an R-module M .
Verify that the law m1

s1
+ m2

s2
= s2m1+s1m2

s1s2
is well defined and makes

S−1M into an abelian group, with 0
1 as the zero element.

If you have time, verify the rest of the claims skipped in class regarding
the basic construction of S−1M and S−1R.

(6) The Hom functors are left exact: Let Q,P be R-modules.
(a) Prove that if 0 −→ A

f−→ B
g−→ C is an exact sequence of

R-modules, then so is

0 −→ HomR(Q,A)
f∗−→ HomR(Q,B)

g∗−→ HomR(Q,C) .

(b) Prove that if A f−→ B
g−→ C −→ 0 is an exact sequence of

R-modules, then so is

0 −→ HomR(C,P )
g∗−→ HomR(B,P )

f∗
−→ HomR(A,P ) .

(7) Prove that a sequence A f−→ B
g−→ C of R-modules is exact if for

every R-module Q, the sequence HomR(Q,A)
f∗−→ HomR(Q,B)

g∗−→
HomR(Q,C) is exact (where f∗φ = f ◦ φ and g∗ψ = g ◦ ψ).

(8) An R-module P is projective if for every R-module N and submodule
N ′ ⊂ N , every R-linear map M → N/N ′ factors as M g−→ N

π−→
N/N ′ for some R-linear g, where π is the quotient map (g is not
required to be unique; this is not a universal property).
(a) Let M be an R-module. Prove that the following conditions are

equivalent:
(i) M is a projective R-module.
(ii) The HomR(M, ·) functor is exact63.
(iii) Every short exact sequence of the form 0 → A → B →

M → 0 splits.
(iv) There is an R-module N such that M ⊕ N is a free R-

module (i.e. M is a direct summand of a free module).

63Recall that a functor is exact if it preserves the exactness of all exact sequences. It’s
best to recall or prove first that a functor that preserves the exactness of all short exact
sequences is exact.
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(b) Prove that every projective module is flat.

(c) Give an example of a projective module that is not free (over
some ring R).

(d) Prove that Q is a flat Z-module, but not a projective Z-module.

(e) Consider the ideal m = (X,Y ) of R = k[X,Y ], k a field.
(i) Find n ≥ 0 and f1, . . . , fℓ ∈ m⊕n such that m ⊗R m ∼=

m⊕n/(f1, . . . , fℓ) as R-modules.
Hint: First find an exact sequence Rt → Rn → m→ 0 of
R-modules, t, n ≥ 0. It may be helpful to recall that R is
a UFD.

(ii) Prove that m is a torsion-free R-module which is not flat.

(f) Nothing to prove: We have shown that free ⇒ projective ⇒ flat ⇒ torsion free,
and that none of the reverse implications holds in general.

(9) Let R1, . . . , Rn be rings and R = R1 × · · · ×Rn.
(a) Prove that every ideal of R is of the form I = I1 × · · · × In, Ij

an ideal of Rj . What are the tuples (I1, . . . , In) for which I is a
prime ideal64?

(b) Explain why the ideals R1×{0} and {0}×R2 of R1×R2 are not
subrings of R1×R2 (in the category of commutative unital rings).

(c) An element e ∈ R is an idempotent if e2 = e. An idempotent
e ∈ R is nontrivial if e /∈ {0, 1}. Prove that:

(i) If e1 ∈ R is an idempotent and e2 := 1− e1 then e1e2 = 0.
If e1 is nontrivial then so is e2.

(ii) The ideal Re1 of I, which is an abelian group closed under
multiplication, becomes a ring if one declares the multi-
plicative identity to be e1 (and similarly for Re2).

(iii) R→ Re1 ×Re2, r 7→ (re1, re2) is a ring isomorphism.

64Note that ideals in an infinite product of rings can be much more complicated, and
the existence of some of them often depends on the axiom of choice.
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(iv) A ring R is isomorphic to a product of nonzero rings if and
only if R contains a nontrivial idempotent element.

(10) Localization:
(a) We have seen that if S ⊂ R is a multiplicative subset, M an R-

module and N ⊂M a submodule, then S−1N can be thought of
as an S−1R-submodule of S−1M . Forget about N . Take T ⊂ S,
another multiplicative subset of R. Prove that there is a T−1R-
linear map f : T−1M → S−1M sending m

t 7→
m
t , show that f

is not necessarily injective. Show that if all elements of S are
not zero divisors and M = R then f : T−1R→ S−1R is injective.

(b) Let S be a multiplicative subset of R, and take an ideal I
of A. Prove that

√
I
e
=
√
Ie, where the ideal extension are

taken with respect to the localization map R → S−1R (the ⊂
inclusion holds for every ring homomorphism). In particular,
(nilA)e = nilS−1A, where nilR =

√
(0) is the ideal consisting

of the nilpotent elements of R.

(c) Let p be a minimal prime ideal of a ring A. Show that all of the
elements of p are zero divisors in A.

(d) Let A be an integral domain. Then all localizations of A are
canonically embedded in Frac(A). Show thatA =

⋂
m∈mspecAAm.

(e) Prove that a ring A is reduced (i.e., 0 is the only nilpotent ele-
ment in A) ⇔ Ap is reduced for every p ∈ specA.

(f) Does the previous question remain true if both occurrences of
“reduced” are replaced by “an integral domain”?

(g) Give an example of an integral domain A, and a ring B, A ⊂
B ⊂ FracA, such that B ̸= S−1A for all multiplicative subsets
S of A.

(11) Take a polynomial f ∈ R[T ]. Prove:
(a) If x ∈ R is nilpotent then 1 + x is invertible. Deduce that if y is

nilpotent and z is invertible then y + z is invertible.
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(b) f is invertible if and only if the constant term of f is invertible
and all other coefficients of f are nilpotent.

(c) f is nilpotent if and only if all of its coefficients are nilpotent.

(d) f is a zero divisor if and only if af = 0 for some 0 ̸= a ∈ R.

(12) Prove that if R is reduced (i.e.
√
(0) = (0) in R), then R can be

embedded in a product of integral domains. Is such R necessarily
isomorphic to a product of integral domains?

(13) Prove that every ring R is a quotient of an integral domain.

(14) Let S be a multiplicative subset of the ring R. Prove that if R is
a noetherian (resp. artinian) ring then S−1R is noetherian (resp.
artinian) ring.

(15) The height ht(p) of a prime ideal p of A is the maximal length d of a
chain of prime ideals of the form:

pd︸︷︷︸
=p

⊋ pd−1 ⊋ · · · ⊋ p0

(there are d + 1 prime ideals in a chain of length d). The (Krull)
dimension dimA of A is

sup{ht(p) | p a prime ideal of A} .

(by convension, the dimension of the zero ring is define to be −1 or
−∞).
(a) Let k be a field. Prove that dim k[T1, . . . , Tn] ≥ n (this is, in

fact, an equality - see later in the course).

(b) Let x ∈ R, R a ring. Prove that

S{x} = {xn(1− rx) | n ≥ 0, r ∈ R}

is a multiplicative subset of R.
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(c) Define R{x} = S−1{x}R. Let n ≥ 0. Prove that

dimR ≤ n ⇔
(
dimR{x} ≤ n− 1 ∀x ∈ R

)
according to the following steps:

(i) Prove that m∩ S{x} ̸= ∅ whenever m is a maximal ideal of
R and x ∈ R.

(ii) Prove that p∩S{x} = ∅ whenever p is a non-maximal prime
ideal of R and x ∈ m \ p for some maximal ideal m that
contains p properly.

(iii) Complete the proof [ Hint: Use the relationship between
the set of prime ideals of S−1R and a certain set of prime
ideals of R. ]

(d) In the next example sheet: Use the claim above to prove that
dimA ≤ trdegA for every finitely generated k-algebra such that
A is an integral domain (here trdegA is the transcedence degree
of FracA, a concept that you will be asked to recall). Deduce
that dim k[T1, . . . , Tn] = n. You can solve this question now if
you remember basic facts about trdeg.
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Example Sheet 3. In all exercises, k is a field and R is a ring (commutative
and unital).

(1) Nakayama:
(a) Let (R,m) be a local ring, M a finitely generated R-module, and

take x1, . . . , xn ∈ M whose images in M/mM span M/mM as
an R/m-vector space. Prove that x1, · · · , xn generate M as an
R-module.

(b) Let (R,m) be a noetherian local ring. Prove that a1, . . . , an ∈
m generate the ideal m ⇔ a1 + m2, . . . , an + m2 span m/m2

as an R/m-vector space. Prove that m can be generated by
dimR/mm/m2 elements of R, but not by fewer elements of R.

(c) Let p be a prime number. Find a module M over Z(p) ={
a
b | a, b ∈ Z, p ∤ b

}
such that

(
(p)Z(p)

)
M =M but M ̸= 0. Why

does that not contradict Nakayama’s lemma?

(d) For finitely generated modules M,N over a local ring (A,m),
show that if M ⊗A N = 0 then M = 0 or N = 0.
Hint: First solve the case where A is a field. Then tensor with
A/m and use Nakayama.

(e) Let φ : M → M an endomorphism of a finitely generated A-
module M . Prove: φ is surjective ⇒ φ is injective, but the
reverse implication ⇐ does not always hold. For the ⇒ implica-
tion, show that the assumption that M is finitely generated is
necessary.
Hint: To prove (⇒), make M into an A[T ]-module by letting T
act as φ.

(f) Deduce that every generating set of cardinality n for the R-
module Rn is a basis (R a nonzero ring).

(g) Prove that if Rn embeds in Rm as an R-module, R a nonzero
ring, then n ≤ m.
Hint: If n > m, consider the mapRm → Rn sending (x1, . . . , xm) 7→
(x1, . . . , xm, 0, . . . , 0), and find a way to use Cayley–Hamilton.

(2) [ remember the statement, but solve this problem only once
done with everything else ] Let M be an R-module and consider
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an exact sequence of R-modules 0 −→ A
f−→ B

g−→ C −→ 0 where
C is flat. Prove that 0 −→ A⊗M f⊗idM−→ B ⊗M g⊗idM−→ C ⊗M −→ 0

is exact.
Hint: We have a short exact sequence 0→ K → F →M → 0 where
F is a free R-module (why?). We have a commutative diagram:

A⊗K //

��

B ⊗K //

��

C ⊗K

��
A⊗ F //

��

B ⊗ F //

��

C ⊗ F

��
A⊗M // B ⊗M // C ⊗M

You can add some 0’s to the diagram (on the left/right/top/bottom)
such that all horizontal and all vertical sequences are exact (do that
and explain). Now chase the diagram to show that A⊗M → B ⊗M
is injective (why is that enough?).

(3) Let R =
∏

i∈I Fi, where each Fi is a field (I not necessarily finite).
Prove that Rp is a field for every p ∈ specR. Deduce that “noetherian”
is not a local property of rings (compare this to the result proved in
Example Class 2).
Hint: Prove that specR = mspecR by showing that for every r ∈ R
there is s ∈ R such that r = r2s. Note also that nilR︸︷︷︸

=
√

(0)

= (0).

(4) Let A ⊂ B ⊂ C be rings such that (i) A is noetherian, (ii) C is finitely
generated as an A-algebra, (iii) C is finite over B. Prove that B is
finitely generated as an A-algebra.

(5) Let I be an ideal of a finitely generated k-algebra A. Prove that
√
I

is equal to the intersection of all maximal ideals containing I.
Hint: Use the strong Nullstellensatz.

(6) Radicals:
(a) Let I and J be ideals of R. Prove that

√
I + J =

√√
I +
√
J ,

that
√
In =

√
I for all n ≥ 1, and that

√
I is a proper ideal of R

whenerver I is a proper ideal of R.
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(b) Let I and J be ideals of R. Prove that that the following
conditions are equivalent.

(i) I and J are coprime (i.e. I + J = R).
(ii) In and Jn are coprime for all n ≥ 1.
(iii) In and Jn are coprime for at least one n ≥ 1.
(iv)

√
I and

√
J are coprime.

(c) Let k be an algebraically closed field, and let X,Y be algebraic
subsets of kn. Consider the equalities:

(i) I(X ∪ Y )
?
= I(X) ∩ I(Y )

(ii) I(X ∩ Y )
?
= I(X) + I(Y )

One of them is always true. For the other to be true you need
to add

√
· over one of its sides. Do that, then prove both, then

show that taking
√
· is necessary.

(7) Let A be an integral domain. Prove that the following conditions are
equivalent:
(a) A is integrally closed.
(b) Ap is integrally closed for all p ∈ specA.
(c) Am is integrally closed for all m ∈ mspecA.
Hint: Use a local property from the lectures. Use a claim about
localizations and integral closures from the lectures.

(8) Let n ≥ 1. Write VC(·) for V (·), as in the lectures, with k = Q and
Ω = C. Let I and J be ideals of Z[T1, . . . , Tn] such that V (I)︸ ︷︷ ︸

⊂Cn

⊂ V (J)︸ ︷︷ ︸
⊂Cn

.

For a prime number p, write Ip and Jp for the images of I and J

(respectively) in Fp[T1, . . . , Tn] (i.e. reduce each coefficient of each
polynomial mod p). Prove that VFp

(Ip) ⊂ VFp
(Jp) for all but finitely

many prime numbers p (here VFp
(·) is V (·) as in the lectures with

k = Fp and Ω = Fp, the algebraic closure of Fp).

(9) Primary decomposition: An ideal q of a ring A is primary if q ̸= A

and all zero divisors in A/q are nilpotent.
Short in time? That’s fine. Solve (a), (b), (c), (f). Read the
statements of all of the parts of this question. Remember
the statements of (g), (j), (k). Better also prove the first
assertion in (k) about a finite intersection of irreducible
ideals.
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(a) Prove that if q is primary then
√
q is the smallest prime ideal

containing q (in this case we say that q is p-primary, p =
√
q).

(b) Prove that if
√
q is maximal for an ideal q of A then q is primary

(and thus m-primary for m =
√
q). Deduce that every power of

a maximal ideal m is m-primary.

(c) Let φ : A→ B be a ring homomorphism, and let q be a p-primary
ideal of B, p ∈ specB. Prove that q contracts to a pc-primary
ideal of A.

(d) Let q and p be ideals of A such that q ⊂ p ⊂ √q and (ab ∈ q ⇒
a ∈ p or b ∈ q). Prove that p is prime and q is p-primary.

(e) Prove that a finite intersection of p-primary ideals is p-primary
(p ∈ specA).
Hint: Use (d).

(f) A minimal prime ideal of an ideal a of A is an ideal p of A
corresponding to a minimal prime ideal of A/a.
A primary decomposition of an ideal a of A is a finite set S of
primary ideals whose intersection is a.
Such a decomposition is minimal if the ideals

√
q, q ∈ S are

distinct, and no element of S contains the the intersections of
the others.
Prove that if a admits a primary decomposition then it admits a
minimal prime decomposition.

(g) Prove that if a = q1∩· · ·∩qn, where qi is pi-primary, then the min-
imal prime ideals of a are the minimal elements of {p1, . . . , pn}.

(h) For an ideal a of A and x ∈ A, let

(a : x) = {a ∈ A | ax ∈ a} .

Check that (a : x) is an ideal of A, containing a, and equal to A
if x ∈ a.

(i) Prove that if q is a p-primary ideal and x ∈ A \ q then (q : x) is
p-primary (while by (h), if x ∈ q then (q : x) = A).
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(j) Let a = q1 ∩ · · · ∩ qn be a minimal primary decomposition of a,
and let pi =

√
qi. Prove that

{p1, . . . , pn} =
{√

(a : x) | x ∈ A,
√
(a : x) ∈ specA

}
(in particular, the set {p1, . . . , pn} does not depend on the choice
of minimal primary decomposition).

(k) An ideal a is irreducible if it is not the intersection of two larger
ideals.
Prove that in a noetherian ring, every ideal is a finite intersection
of irreducible ideals, and every irreducible ideal is primary (and
thus every ideal in a noetherian ring has a primary decomposi-
tion).

(10) Recall the notion of trascendence degree (the review below suffices).
For a k-algebra A such that A is an integral domain, define trdegk A :=

trdegk FracA.
(a) Prove that dimA ≤ trdegk A.

Hint: Argue by induction on trdegk A. Use ES2.Q15(c): to
compute A{x} (as in ES2.Q15), x ∈ A, separate to cases: (i) x
algebraic over k, (ii) x transcendental over k.

(b) Deduce that k[T1, . . . , Tn] = n.

(11) Let R be a nonzero ring. Use Zorn’s lemma to prove that R has
a minimal prime ideal (i.e. a prime ideal not containing any other
prime ideal). Deduce that every prime ideal of R contains a minimal
prime ideal.

A review of transcendence bases. Let k ⊂ L be fields. A subset A of L is a
transcedence basis for L over k if it satisfies one (hence all) of the equivalent
conditions in the following proposition:

Proposition 15.1. The following conditions are equivalent:
(1) A is algebraically independent over k, and L is algebraic over k(A).
(2) A is algebraically independent over k, but A∪ {β} is not algebraically

independent over k for any β ∈ L.
(3) L is algebraic over k(A), but not over k(A \ {α}) for any α ∈ A.

Proof. See any book on field theory. □
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The following proposition implies that L has a transcendence basis over k
(plug A = ∅ into (i)).

Proposition 15.2.
i) If A ⊂ L is algebraically independent over k, then there is a transce-

dence basis B for L over k such that A ⊂ B.
ii) All transcedence bases for L over k have the same cardinality.
iii) For fields k ⊂ L ⊂ E, if B and C are transcedence bases for L/k and

E/L, respectively, then B ∪ C is a transcedence basis for E/k.

The common cardinality of all trascendence bases for L over k (see Propo-
sition 15.2(ii)) is called the transcedence degree of L over k, and is denoted
trdegk L. By Proposition 15.2(iii), trdegk E = trdegk L+ trdegLE.



COMMUTATIVE ALGEBRA 136

Example Sheet 4. In all exercises, k is a field and R is a ring (commutative
and unital).

(1)
(a) Prove that every minimal nonzero prime ideal p of a UFD A is

principal.

(b) Let A be a PID. Prove that dimA = 0 (and then A is a field) or
dimA = 1 (and then A is not a field).

(2) Prove that trdegk k[T1, . . . , Tn]/(f) = n − 1 for every irreducible
polynomial f ∈ k[T1, . . . , Tn].

(3) Let A be a finitely generated k-algebra and an integral domain.
(a) Let pr ⊋ · · · ⊋ p0 be a non-refinable chain of prime ideals of A

(i.e. pr is a maximal ideal, p0 is a minimal prime ideal, and there
is no prime ideal strictly between pi and pi+1 for all 0 ≤ i < r).
Prove that r = dimA.
Hint: Use induction on dimA, Noether normalization, Q1, Q2,
the Incomparability and Going-down Theorems, Proposition 13.5
from the lecture notes, and maybe more.

(b) Prove that dimA/p+ ht p = dimA for every p ∈ specA.

(4) Let R = Z(2) =
{
a
b | a, b ∈ Z, 2 ∤ b

}
and A = R[T ]. Prove: (i) the

ideals m1 = (2T − 1) and m2 = (T, 2) of A are maximal, (ii) A
is a noetherian integral domain, (iii) dimA/m1 + htm1 = 1 and
dimA/m2 + htm2 = 2.

(5) Let A be a ring, dimA <∞. Prove that

dimA+ 1 ≤ dimA[T ] ≤ 1 + 2dimA

as follows:
(a) For p ∈ specA, show that p[T ] (the subset of A[T ] of polynomials

with coefficient in p) and (p, T ) are prime ideals of A[T ], and
deduce that dimA+ 1 ≤ dimA[T ].
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(b) For p ∈ specA, show that the longest chain of prime ideals of
A[T ] that contract to p is of length 1, and deduce that dimA[T ] ≤
1 + 2dimA.
Hint: Take such a chain of prime ideals, extend each of them to
S−1(A[T ]) ∼= Ap[T ], S = A \ p, and then to Ap[T ]/((pAp)[T ]).

(6) Let A be a noetherian ring, dimA < ∞. Prove that dimA[T ] =

1 + dimA , and deduce that dim k[T1, . . . , Tn] = n for a field k.
Hint: One inequality was proved in Q5. For the other inequality, use
Hilbert’s basis theorem, Krull’s height theorem and its converse (see
below), and also Q5, Q5a, Q5b.

(7) Converse to Krull’s height theorem: Let a be a proper ideal of
a noetherian ring A, ht a = r. Prove that there are a1, . . . , ar ∈ a

such that ht(a1, . . . , ai) = i for each 0 ≤ i ≤ r (recall: ht b =

minb⊂p∈specA ht p).

(8) Dimension:
(a) Let a be an ideal of k[T1, . . . , Tn], k an algebraically closed field.

We have seen that a has finitely many minimal prime ideals
p1, . . . , ps, and that

√
a =

⋂
i pi. Thus V (a) =

⋃
i V (pi). We’ve

seen that each V (pi) is an irreducible algebraic subset of An
k .

The V (p1), . . . , V (pn) are the irreducible components of V (a).
Prove that if a = (f1, . . . , fr) then each irreducible component
of V (a) is of dimension at least n− r (where the dimension of
an irreducible algebraic set X is the maximal length d of a chain
X = Xd ⊋ · · · ⊋ X0 of irreducible algebraic sets).
Hint: This is a direct consequence of Krull’s height theorem
and Q3b.

(b) Krull’s principal ideal theorem: Let x ∈ A, A a noetherian
ring, x not a zero divisor. Prove that ht p = 1 for every mini-
mal prime ideal of (x) Hint: Use Krull’s height theorem and
ES2.Q10c.

(c) Prove that dimA ≤ dimA/mm/m2 for a noetherian local ring
(A,m).
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(9) Let R be a noetherian ring. Is it necessarily true that every descending
chain of prime ideals of R stabilizes?

(10) Hilbert function of a polynomial algebra with a nonstandard grading:
(a) Consider A = k[T1, T2], and let deg′(T e1

1 T e2) = e1 + 2e2. Let
An, n ≥ 0, be the subset of A consisting of all polynomials that
are deg′-homogeneous of degree n (i.e., k-linear combinations of
monomials m with deg′(m) = n). Prove that A =

⊕
n≥0An is a

graded ring.

(b) Prove that there is no polynomial f such that f(n) = dimk An

for all large enough n (compare this to our definition of the
Hilbert polynomial, and check why it does not apply here).

(c) Write down the Poincare series
∑

n≥0(dimAn) · TN of A (with
our nonstandard grading) as a rational function.

(11) Let A ̸= 0 be a finitely generated k-algebra (not necessarily an
integral domain). Let t be the maximal cardinality of a k-algebraically
independent subset of A. Prove that t = dimA.

(12)
(a) Let (A,m) be an artinian local ring. Prove that specA = {m}

and nilA = m.

(b) Let (A,m) be a noetherian local ring. Prove that exactly one of
the following statements holds:

(i) A is not artinian and mn ̸= mn+1 for all n ≥ 0.
(ii) A is artinian and mn = 0 for some n ≥ 0.

(c) Give an example of an artinian local ring that is not a field.

(d) Every artinian ring is a finite product of artinian local
rings: Let A be an artinian ring. Recall (ES2), that specA =

mspecA is a finite set {m1, . . . ,mn}, and that mℓ
1 · · ·mℓ

n = 0 for
some ℓ ≥ 1. Prove that the natural map φ : A→ A/mℓ

1 × · · · ×
A/mℓ

n is a ring homomorphism and that each
(
A/mℓ

i ,mi/m
ℓ
i

)
is

an artinian local ring.
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(e) [ non-examinable ] Let A be a ring such that A ∼=
∏n

i=1Ai,
where Ai is an artinian local ring. Prove that A is artinian. Write
πi : A→ Ai for the natural projection. Prove that the ideal (0)
of A has a unique primary decomposition (0) =

⋂n
i=1 kerπi, and

thus n and the rings A1, . . . , An are determined uniquely up to
their order (and up to isomorphism).

(13) In the lectures we proved that if R is a noetherian ring then ht p <∞
for every p ∈ specR. Here we construct a noetherian ring R such
that dimR =∞.
Let A = k[T1, T2, . . . ], k a field. Let pi =

(
Ti2 , . . . , T(i+1)2−1

)
for all

i ≥ 1, and let S = R \
⋃∞

i=1 pi.
(a) Prove that S is a multiplicative set.

(b) Prove that S−1pi = 2i+ 1 for i ≥ 1 (S−1pi is the extenstion pei
of the ideal pi with respect to the localization map A→ S−1A).
Conclude that dimS−1A =∞.

(c) [ non-examinable ] Prove that the ring S−1A is noetherian.
Hint: Use a claim from the lecture notes, proved in an example
class, that gives a local condition for noetherianity of a ring
(noetherianity is not a local property).

(14) A filtration (Mn)n≥0 of an R-module M defines a topology on M

given by the topological basis {x+Mn | x ∈M,n ≥ 0}. In particu-
lar, for an ideal a of R, the a-adic topology on M is the topology
corresponding to the filtration (anM)n≥0.
Let R be a noetherian ring, a an ideal of R, M a finitely generated
R-module, and N a submodule of M . Prove that the topology on
N induced from the a-adic topology on M is the same as the a-adic
topology on N . Hint: This follows rather easily from two claims
from the lectures.

(15)
(a) Let M be an R-module, and a an ideal of R. Consider the

a-adic completion map ϕ : M → lim←−M/anM . Note that kerϕ =⋂
n≥0 a

nM .
(b) Assume that R is noetherian and local, M is finitely generated

over R, and a is a proper ideal of R. Prove that ϕ is injective.
Note: This is true also if R is a noetherian integral domain (not
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necessarily local).

(16) Let A =
⊕

n≥0An be a noetherian graded ring with A0 artinian.
Let 0 ̸= M =

⊕
n≥0Mn be a finitely generated graded A-module.

Take k ≥ 0 and x ∈ Ak such that {m ∈M | xm = 0} = {0}. Prove
that d(M/xM) = d(M) − 1 (here we think of M/xM as a graded
A-module in the natural way).
Hint: Review the proof of the Hilbert–Serre Theorem.

(17) Dedekind domains:
(a) Complete the proofs skipped in the last lecture (see the notes if

needed):
(i) Let (A,m) be a noetherian local domain of dimension 1.

Prove the following implications: m is a principal ideal
⇒ Every nonzero ideal of A is a power of m ⇒ There is
π ∈ A such that every nonzero ideal of A is equal to (πn)

for some n ≥ 0 ⇒ A is a DVR.
(ii) Consider the localization map R→ S−1R for some multi-

plicative subset S of a ring R. Take p ∈ specR such that
p ∩ S = ∅, and let q be a p-primary ideal of R. Prove that
q is contracted from S−1R.

(iii) Let A be a Dedekind domain and (0) ̸= p ∈ specA. Prove
that the set of p-primary ideals of A is {pn}n≥1, and that
(pn)n≥1 is a strictly descending sequence.

(b) Prove or disprove each of the following statements:
(i) If v1 and v2 are discrete valuations on fields K1 and K2

(respectively) such that the valuation rings of v1 and v2 are
isomorphic rings, then the fields K1 and K2 are isomorphic.

(ii) If v1 and v2 are discrete valuations on a field K such that
the valuation rings of v1 and v2 are equal then v1 = v2.

(c) Let a be a nonzero ideal of a Dedekind domain A, and let
0 ̸= p ∈ specA. What information about the decomposition of
a as a product of powers of prime ideals of A can be extracted
from the ideal aAp of Ap?
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